CircFormerMoE: An End-to-End Deep Learning Framework for Circular RNA Splice Site Detection and Pairing in Plant Genomes
- URL: http://arxiv.org/abs/2507.08542v1
- Date: Fri, 11 Jul 2025 12:43:17 GMT
- Title: CircFormerMoE: An End-to-End Deep Learning Framework for Circular RNA Splice Site Detection and Pairing in Plant Genomes
- Authors: Tianyou Jiang,
- Abstract summary: Circular RNAs (circRNAs) are important components of the non-coding RNA regulatory network.<n>We propose a deep learning framework named CircFormerMoE based on transformers and mixture-of experts for predicting circRNAs directly from plant genomic DNA.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Circular RNAs (circRNAs) are important components of the non-coding RNA regulatory network. Previous circRNA identification primarily relies on high-throughput RNA sequencing (RNA-seq) data combined with alignment-based algorithms that detect back-splicing signals. However, these methods face several limitations: they can't predict circRNAs directly from genomic DNA sequences and relies heavily on RNA experimental data; they involve high computational costs due to complex alignment and filtering steps; and they are inefficient for large-scale or genome-wide circRNA prediction. The challenge is even greater in plants, where plant circRNA splice sites often lack the canonical GT-AG motif seen in human mRNA splicing, and no efficient deep learning model with strong generalization capability currently exists. Furthermore, the number of currently identified plant circRNAs is likely far lower than their true abundance. In this paper, we propose a deep learning framework named CircFormerMoE based on transformers and mixture-of experts for predicting circRNAs directly from plant genomic DNA. Our framework consists of two subtasks known as splicing site detection (SSD) and splicing site pairing (SSP). The model's effectiveness has been validated on gene data of 10 plant species. Trained on known circRNA instances, it is also capable of discovering previously unannotated circRNAs. In addition, we performed interpretability analyses on the trained model to investigate the sequence patterns contributing to its predictions. Our framework provides a fast and accurate computational method and tool for large-scale circRNA discovery in plants, laying a foundation for future research in plant functional genomics and non-coding RNA annotation.
Related papers
- RNAMunin: A Deep Machine Learning Model for Non-coding RNA Discovery [0.0]
Non-coding RNAs (ncRNAs) are critical for regulating bacterial and archaeal physiology, stress response and metabolism.<n>This paper presents RNAMunin, a machine learning (ML) model that is capable of finding ncRNAs using genomic sequence alone.<n> RNAMunin is trained on Rfam sequences extracted from approximately 60 Gbp of long read metagenomes from 16 San Francisco Estuary samples.
arXiv Detail & Related papers (2025-07-16T06:33:50Z) - Regulatory DNA sequence Design with Reinforcement Learning [56.20290878358356]
We propose a generative approach that leverages reinforcement learning to fine-tune a pre-trained autoregressive model.<n>We evaluate our method on promoter design tasks in two yeast media conditions and enhancer design tasks for three human cell types.
arXiv Detail & Related papers (2025-03-11T02:33:33Z) - LoRA-BERT: a Natural Language Processing Model for Robust and Accurate Prediction of long non-coding RNAs [11.346750562942345]
Long non-coding RNAs (lncRNAs) serve as crucial regulators in numerous biological processes.
Deep learning-based approaches have been introduced to classify lncRNAs.
LoRA-BERT is designed to capture the importance of nucleotide-level information during sequence classification.
arXiv Detail & Related papers (2024-11-11T22:17:01Z) - RNA-GPT: Multimodal Generative System for RNA Sequence Understanding [6.611255836269348]
RNAs are essential molecules that carry genetic information vital for life.
Despite this importance, RNA research is often hindered by the vast literature available on the topic.
We introduce RNA-GPT, a multi-modal RNA chat model designed to simplify RNA discovery.
arXiv Detail & Related papers (2024-10-29T06:19:56Z) - BEACON: Benchmark for Comprehensive RNA Tasks and Language Models [60.02663015002029]
We introduce the first comprehensive RNA benchmark BEACON (textbfBEnchmtextbfArk for textbfCOmprehensive RtextbfNA Task and Language Models).<n>First, BEACON comprises 13 distinct tasks derived from extensive previous work covering structural analysis, functional studies, and engineering applications.<n>Second, we examine a range of models, including traditional approaches like CNNs, as well as advanced RNA foundation models based on language models, offering valuable insights into the task-specific performances of these models.<n>Third, we investigate the vital RNA language model components
arXiv Detail & Related papers (2024-06-14T19:39:19Z) - Description Generation using Variational Auto-Encoders for precursor
microRNA [5.6710852973206105]
We propose a novel framework, which makes use of generative modeling through Vari Auto-Encoders to uncover latent factors of pre-miRNA.
Applying the framework to classification, we obtain a high reconstruction and classification performance, while also developing an accurate description.
arXiv Detail & Related papers (2023-11-29T15:41:45Z) - scHyena: Foundation Model for Full-Length Single-Cell RNA-Seq Analysis
in Brain [46.39828178736219]
We introduce scHyena, a foundation model designed to address these challenges and enhance the accuracy of scRNA-seq analysis in the brain.
scHyena is equipped with a linear adaptor layer, the positional encoding via gene-embedding, and a bidirectional Hyena operator.
This enables us to process full-length scRNA-seq data without losing any information from the raw data.
arXiv Detail & Related papers (2023-10-04T10:30:08Z) - Knowledge from Large-Scale Protein Contact Prediction Models Can Be
Transferred to the Data-Scarce RNA Contact Prediction Task [40.051834115537474]
We find that a protein-coevolution Transformer-based deep neural network can be transferred to the RNA contact prediction task.
Experiments confirm that RNA contact prediction through transfer learning is greatly improved.
Our findings indicate that the learned structural patterns of proteins can be transferred to RNAs, opening up potential new avenues for research.
arXiv Detail & Related papers (2023-02-13T06:00:56Z) - RDesign: Hierarchical Data-efficient Representation Learning for
Tertiary Structure-based RNA Design [65.41144149958208]
This study aims to systematically construct a data-driven RNA design pipeline.
We crafted a benchmark dataset and designed a comprehensive structural modeling approach to represent the complex RNA tertiary structure.
We incorporated extracted secondary structures with base pairs as prior knowledge to facilitate the RNA design process.
arXiv Detail & Related papers (2023-01-25T17:19:49Z) - Accurate RNA 3D structure prediction using a language model-based deep learning approach [50.193512039121984]
RhoFold+ is an RNA language model-based deep learning method that accurately predicts 3D structures of single-chain RNAs from sequences.<n>RhoFold+ offers a fully automated end-to-end pipeline for RNA 3D structure prediction.
arXiv Detail & Related papers (2022-07-04T17:15:35Z) - Visualizing hierarchies in scRNA-seq data using a density tree-biased
autoencoder [50.591267188664666]
We propose an approach for identifying a meaningful tree structure from high-dimensional scRNA-seq data.
We then introduce DTAE, a tree-biased autoencoder that emphasizes the tree structure of the data in low dimensional space.
arXiv Detail & Related papers (2021-02-11T08:48:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.