論文の概要: Geometric Constraints Enable Self-Supervised Sinogram Inpainting in
Sparse-View Tomography
- arxiv url: http://arxiv.org/abs/2302.06436v2
- Date: Wed, 9 Aug 2023 13:19:29 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-10 18:10:52.032860
- Title: Geometric Constraints Enable Self-Supervised Sinogram Inpainting in
Sparse-View Tomography
- Title(参考訳): Sparse-View Tomography における自己監督型Sinogram Inpaintingを可能にする幾何学的制約
- Authors: Fabian Wagner, Mareike Thies, Noah Maul, Laura Pfaff, Oliver Aust,
Sabrina Pechmann, Christopher Syben, Andreas Maier
- Abstract要約: スパース角度トモグラフィースキャンは放射線を低減し、データ取得を加速するが、画像のアーチファクトやノイズに悩まされる。
既存の画像処理アルゴリズムはCT再構成の品質を復元することができるが、大きなトレーニングデータセットを必要とする場合が多い。
本研究は、勾配に基づく最適化により、欠落した射影ビューを最適化する自己教師付きプロジェクションインペインティング法を提案する。
- 参考スコア(独自算出の注目度): 7.416898042520079
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The diagnostic quality of computed tomography (CT) scans is usually
restricted by the induced patient dose, scan speed, and image quality.
Sparse-angle tomographic scans reduce radiation exposure and accelerate data
acquisition, but suffer from image artifacts and noise. Existing image
processing algorithms can restore CT reconstruction quality but often require
large training data sets or can not be used for truncated objects. This work
presents a self-supervised projection inpainting method that allows optimizing
missing projective views via gradient-based optimization. By reconstructing
independent stacks of projection data, a self-supervised loss is calculated in
the CT image domain and used to directly optimize projection image intensities
to match the missing tomographic views constrained by the projection geometry.
Our experiments on real X-ray microscope (XRM) tomographic mouse tibia bone
scans show that our method improves reconstructions by 3.1-7.4%/7.7-17.6% in
terms of PSNR/SSIM with respect to the interpolation baseline. Our approach is
applicable as a flexible self-supervised projection inpainting tool for
tomographic applications.
- Abstract(参考訳): CTスキャンの診断精度は、通常、誘発された患者線量、スキャン速度、画像品質によって制限される。
偏角断層撮影は放射線被曝を減少させ、データ取得を加速するが、画像のアーティファクトやノイズに苦しむ。
既存の画像処理アルゴリズムはCT再構成の品質を復元することができるが、大きなトレーニングデータセットを必要とする場合が多い。
本研究は、勾配に基づく最適化により、欠落した投影ビューを最適化する自己教師付き投影インペインティング手法を提案する。
投影データの独立したスタックを再構成することにより、ct画像領域で自己教師付き損失を算出し、投影幾何で制約された行方不明の断層画像ビューにマッチするように投影画像強度を直接最適化する。
実際のX線顕微鏡(XRM)を用いたX線トモグラフィマウスの骨スキャン実験により,PSNR/SSIMでは3.1-7.4%/7.7-17.6%の再現性を示した。
我々の手法は、トモグラフィー応用のためのフレキシブルな自己教師型プロジェクション塗装ツールとして適用できる。
関連論文リスト
- TomoGRAF: A Robust and Generalizable Reconstruction Network for Single-View Computed Tomography [3.1209855614927275]
従来の解析的・定性的なCT再構成アルゴリズムは数百の角データサンプリングを必要とする。
我々は,高品質な3Dボリュームを再構成するために,ユニークなX線輸送物理を取り入れた新しいTtomoGRAFフレームワークを開発した。
論文 参考訳(メタデータ) (2024-11-12T20:07:59Z) - CT-SDM: A Sampling Diffusion Model for Sparse-View CT Reconstruction across All Sampling Rates [16.985836345715963]
Sparse view X-ray Computed tomography は放射線線量減少を緩和する現代的手法として登場した。
深層学習を用いた最近の研究は, Sparse-View Computed Tomography (SVCT) のアーティファクトの除去に有望な進展をもたらした。
本研究では,任意のサンプリングレートで高性能SVCT再構成を実現するための適応的再構成手法を提案する。
論文 参考訳(メタデータ) (2024-09-03T03:06:15Z) - FCDM: Sparse-view Sinogram Inpainting with Frequency Domain Convolution Enhanced Diffusion Models [14.043383277622874]
シングラムデータに適した新しい拡散型塗布フレームワークを提案する。
FCDMは既存の手法よりも優れており、SSIMが0.95以上、PSNRが30dB以上、SSIMが33%、PSNRが29%である。
論文 参考訳(メタデータ) (2024-08-26T12:31:38Z) - CoCPF: Coordinate-based Continuous Projection Field for Ill-Posed Inverse Problem in Imaging [78.734927709231]
スパース・ビュー・コンピュート・トモグラフィー(SVCT)の再構成は,スパース・サンプリングによるCT画像の取得を目的としている。
暗黙的な神経表現(INR)技術は、不備のため、その分野に「かなりの穴」(すなわち、未モデル化空間)を残し、準最適結果をもたらす可能性がある。
SVCT再構成のためのホールフリー表現場を構築することを目的としたコーディネート型連続射影場(CoCPF)を提案する。
論文 参考訳(メタデータ) (2024-06-21T08:38:30Z) - APRF: Anti-Aliasing Projection Representation Field for Inverse Problem
in Imaging [74.9262846410559]
Sparse-view Computed Tomography (SVCT) は画像の逆問題である。
近年の研究では、インプリシット・ニューラル・リ表現(INR)を用いて、シングラムとCT画像の座標に基づくマッピングを構築している。
自己教師型SVCT再構成法の提案 -抗エイリアス射影表現場(APRF)-
APRFは空間的制約によって隣接する投影ビュー間の連続的な表現を構築することができる。
論文 参考訳(メタデータ) (2023-07-11T14:04:12Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
深層学習に基づくニューラルネットワークを用いて,OCTの軸運動とコロナ運動のアーチファクトを1つのスキャンで補正する。
実験結果から, 提案手法は動作アーチファクトを効果的に補正し, 誤差が他の方法よりも小さいことを示す。
論文 参考訳(メタデータ) (2023-05-27T03:55:19Z) - Generative Modeling in Sinogram Domain for Sparse-view CT Reconstruction [12.932897771104825]
CT検査では投射回数を直感的に減らすことで放射線線量を大幅に減少させることができる。
疎視データを用いた従来のディープラーニング技術では、教師付き方法でネットワークをトレーニングするためにスパースビュー/フルビューCTイメージペアが必要である。
スパース・ビューCT再構成のための非教師なしスコアベース生成モデルについて検討した。
論文 参考訳(メタデータ) (2022-11-25T06:49:18Z) - Multi-Channel Convolutional Analysis Operator Learning for Dual-Energy
CT Reconstruction [108.06731611196291]
我々は,多チャンネル畳み込み解析演算子学習法(MCAOL)を開発した。
本研究では,低エネルギー,高エネルギーで減衰画像を共同で再構成する最適化手法を提案する。
論文 参考訳(メタデータ) (2022-03-10T14:22:54Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
伝播距離、位置誤差、部分的コヒーレンスにおける粗いパラメトリゼーションは、しばしば実験の生存性を脅かす。
最新のDeep Learningフレームワークは、セットアップの不整合を自律的に補正するために使用され、ポチコグラフィーの再構築の質が向上する。
我々は,elettra シンクロトロン施設のツインミックビームラインで取得した合成データセットと実データの両方でシステムをテストした。
論文 参考訳(メタデータ) (2021-05-18T10:15:17Z) - Interpolation of CT Projections by Exploiting Their Self-Similarity and
Smoothness [6.891238879512674]
提案アルゴリズムは, シングラムの自己相似性と滑らか性を利用する。
シミュレーションおよび実ctデータを用いた実験により,提案アルゴリズムを用いたシンノグラムにより,再構成画像の品質が大幅に向上することが示された。
論文 参考訳(メタデータ) (2021-03-05T22:41:25Z) - Data Consistent CT Reconstruction from Insufficient Data with Learned
Prior Images [70.13735569016752]
偽陰性病変と偽陽性病変を呈示し,CT画像再構成における深層学習の堅牢性について検討した。
本稿では,圧縮センシングと深層学習の利点を組み合わせた画像品質向上のためのデータ一貫性再構築手法を提案する。
提案手法の有効性は,円錐ビームCTにおいて,トランキャットデータ,リミテッドアングルデータ,スパースビューデータで示される。
論文 参考訳(メタデータ) (2020-05-20T13:30:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。