論文の概要: FCDM: Sparse-view Sinogram Inpainting with Frequency Domain Convolution Enhanced Diffusion Models
- arxiv url: http://arxiv.org/abs/2409.06714v2
- Date: Fri, 22 Nov 2024 21:17:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:14:26.021303
- Title: FCDM: Sparse-view Sinogram Inpainting with Frequency Domain Convolution Enhanced Diffusion Models
- Title(参考訳): 周波数領域畳み込み拡張拡散モデルによるSinogramのスパースビュー表示
- Authors: Jiaze E, Srutarshi Banerjee, Tekin Bicer, Guannan Wang, Yanfu Zhang, Bin Ren,
- Abstract要約: シングラムデータに適した新しい拡散型塗布フレームワークを提案する。
FCDMは既存の手法よりも優れており、SSIMが0.95以上、PSNRが30dB以上、SSIMが33%、PSNRが29%である。
- 参考スコア(独自算出の注目度): 14.043383277622874
- License:
- Abstract: Computed tomography (CT) is an imaging technique that uses X-ray projections from multiple rotation angles to create detailed cross-sectional images, widely used in industrial inspection and medical diagnostics. Reducing the projection data in CT scans is often necessary to decrease radiation exposure, scanning time, and computational costs. However, this reduction makes accurate image reconstruction challenging due to the incomplete sinogram. Existing RGB inpainting models struggle with severe feature overlap, while current sinogram-specific models fail to employ efficient feature extraction methods that account for the physical principles underlying the sinogram generation process. To tackle these challenges, we introduce the Frequency Convolution Diffusion Model (FCDM), a novel diffusion-based inpainting framework tailored for sinogram data. FCDM leverages frequency-domain convolutions to capture global and fine-grained structural features, effectively disentangling overlapping components across projection angles. Additionally, we propose a custom loss function that incorporates unique sinogram properties of total absorption consistency and frequency-domain consistency. Extensive experiments on synthetic and real-world datasets demonstrate that FCDM significantly outperforms existing methods, achieving SSIM over 0.95 and PSNR above 30 dB, with improvements of up to 33% in SSIM and 29% in PSNR compared to baselines.
- Abstract(参考訳): CT(Computed tomography)は、複数の回転角からX線を投影して詳細な断面画像を作成するイメージング技術であり、産業検査や医療診断に広く用いられている。
CTスキャンにおける投影データを減らすことは、放射線暴露、走査時間、計算コストを減らすためにしばしば必要である。
しかし、この縮小は、不完全なシノグラムのため、正確な画像再構成を困難にしている。
既存のRGB塗装モデルは深刻な特徴重なりに苦しむが、現在のノモグラム固有のモデルは、ナモグラム生成プロセスの基礎となる物理原理を考慮に入れた効率的な特徴抽出手法を使わなかった。
これらの課題に対処するために、ノングラムデータに適した新しい拡散ベースの塗布フレームワークである周波数畳み込み拡散モデル(FCDM)を導入する。
FCDMは周波数領域の畳み込みを利用して、大域的および微細な構造的特徴を捉える。
さらに、全吸収整合性と周波数領域整合性の特異なシノグラム特性を取り入れたカスタム損失関数を提案する。
合成および実世界のデータセットに関する大規模な実験では、FCDMは既存の手法よりも大幅に優れており、SSIMが0.95以上、PSNRが30dB以上、SSIMが33%、PSNRが29%向上している。
関連論文リスト
- Partitioned Hankel-based Diffusion Models for Few-shot Low-dose CT Reconstruction [10.158713017984345]
分割ハンケル拡散(PHD)モデルを用いた低用量CT再構成法を提案する。
反復再構成段階では、反復微分方程式解法とデータ一貫性制約を併用して、取得した投影データを更新する。
その結果,PHDモデルを画像品質を維持しつつ,アーチファクトやノイズを低減し,有効かつ実用的なモデルとして検証した。
論文 参考訳(メタデータ) (2024-05-27T13:44:53Z) - Generalized Consistency Trajectory Models for Image Manipulation [59.576781858809355]
拡散モデル(DM)は、画像編集や復元などの応用と同様に、無条件生成において優れている。
本研究の目的は、一般化されたCTM(GCTM)を提案することによって、整合性軌道モデル(CTM)の完全なポテンシャルを解放することである。
本稿では,GCTMの設計空間について論じ,画像から画像への変換,復元,編集など,様々な画像操作タスクにおいて有効性を示す。
論文 参考訳(メタデータ) (2024-03-19T07:24:54Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
本稿では,拡散型異常検出(Difusion-based Anomaly Detection, DAD)フレームワークを提案する。
画素空間オートエンコーダ、安定拡散の復調ネットワークに接続する潜在空間セマンティックガイド(SG)ネットワーク、特徴空間事前学習機能抽出器から構成される。
MVTec-ADとVisAデータセットの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-12-11T18:38:28Z) - APRF: Anti-Aliasing Projection Representation Field for Inverse Problem
in Imaging [74.9262846410559]
Sparse-view Computed Tomography (SVCT) は画像の逆問題である。
近年の研究では、インプリシット・ニューラル・リ表現(INR)を用いて、シングラムとCT画像の座標に基づくマッピングを構築している。
自己教師型SVCT再構成法の提案 -抗エイリアス射影表現場(APRF)-
APRFは空間的制約によって隣接する投影ビュー間の連続的な表現を構築することができる。
論文 参考訳(メタデータ) (2023-07-11T14:04:12Z) - Geometric Constraints Enable Self-Supervised Sinogram Inpainting in
Sparse-View Tomography [7.416898042520079]
スパース角度トモグラフィースキャンは放射線を低減し、データ取得を加速するが、画像のアーチファクトやノイズに悩まされる。
既存の画像処理アルゴリズムはCT再構成の品質を復元することができるが、大きなトレーニングデータセットを必要とする場合が多い。
本研究は、勾配に基づく最適化により、欠落した射影ビューを最適化する自己教師付きプロジェクションインペインティング法を提案する。
論文 参考訳(メタデータ) (2023-02-13T15:15:18Z) - Orientation-Shared Convolution Representation for CT Metal Artifact
Learning [63.67718355820655]
X線CT(CT)スキャン中、患者を乗せた金属インプラントは、しばしば有害なアーティファクトに繋がる。
既存のディープラーニングベースの手法は、有望な再構築性能を得た。
本稿では,人工物の物理的事前構造に適応するために,配向型畳み込み表現戦略を提案する。
論文 参考訳(メタデータ) (2022-12-26T13:56:12Z) - One Sample Diffusion Model in Projection Domain for Low-Dose CT Imaging [10.797632196651731]
低線量CTは臨床応用における放射線リスクの低減に重要な役割を担っている。
ディープラーニングの急速な開発と幅広い応用により、低線量CTイメージングアルゴリズムの開発に向けた新たな方向性がもたらされた。
低用量CT再構成のための投影領域における完全に教師なし1サンプル拡散モデル(OSDM)を提案する。
以上の結果から,OSDMはアーティファクトを低減し,画像品質を維持するための実用的で効果的なモデルであることが証明された。
論文 参考訳(メタデータ) (2022-12-07T13:39:23Z) - Self-Attention Generative Adversarial Network for Iterative
Reconstruction of CT Images [0.9208007322096533]
本研究の目的は、ノイズや不完全なデータから高品質なCT画像を再構成するために、単一のニューラルネットワークを訓練することである。
ネットワークには、データ内の長距離依存関係をモデル化するセルフアテンションブロックが含まれている。
我々のアプローチはCIRCLE GANに匹敵する全体的なパフォーマンスを示し、他の2つのアプローチよりも優れています。
論文 参考訳(メタデータ) (2021-12-23T19:20:38Z) - DuDoTrans: Dual-Domain Transformer Provides More Attention for Sinogram
Restoration in Sparse-View CT Reconstruction [13.358197688568463]
撮像過程におけるヨウ素の放射線は 不可逆的な損傷を引き起こす
スパースビューCT画像に現れるアーティファクトを緩和する反復モデルが提案されているが,コストが高すぎる。
textbfDual-textbfDomain textbfDuDoTransを提案する。
論文 参考訳(メタデータ) (2021-11-21T10:41:07Z) - CyTran: A Cycle-Consistent Transformer with Multi-Level Consistency for
Non-Contrast to Contrast CT Translation [56.622832383316215]
コントラストCTを非コントラストCTに変換する手法を提案する。
提案手法は、CyTranを略して、サイクル一貫性のある生成逆転変換器に基づいている。
実験の結果、CyTranは競合するすべての手法より優れています。
論文 参考訳(メタデータ) (2021-10-12T23:25:03Z) - Multifold Acceleration of Diffusion MRI via Slice-Interleaved Diffusion
Encoding (SIDE) [50.65891535040752]
本稿では,Slice-Interleaved Diffusionと呼ばれる拡散符号化方式を提案する。
SIDEは、拡散重み付き(DW)画像ボリュームを異なる拡散勾配で符号化したスライスでインターリーブする。
また,高いスライスアンサンプデータからDW画像を効果的に再構成するためのディープラーニングに基づく手法を提案する。
論文 参考訳(メタデータ) (2020-02-25T14:48:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。