ECG-Based Patient Identification: A Comprehensive Evaluation Across Health and Activity Conditions
- URL: http://arxiv.org/abs/2302.06529v3
- Date: Tue, 26 Nov 2024 10:07:58 GMT
- Title: ECG-Based Patient Identification: A Comprehensive Evaluation Across Health and Activity Conditions
- Authors: Caterina Fuster-Barceló, Carmen Cámara, Pedro Peris-López,
- Abstract summary: This paper presents a novel approach for patient identification in healthcare systems using electrocardiogram signals.
A convolutional neural network (CNN) is employed to classify users based on electrocardiomatrices, a specific type of image derived from ECG signals.
The proposed identification system is evaluated in multiple databases, achieving up to 99.84% accuracy on healthy subjects, 97.09% on patients with cardiovascular diseases, and 97.89% on mixed populations including both healthy and arrhythmic patients.
- Score: 0.0
- License:
- Abstract: Over the course of the past two decades, a substantial body of research has substantiated the viability of utilising cardiac signals as a biometric modality. This paper presents a novel approach for patient identification in healthcare systems using electrocardiogram signals. A convolutional neural network (CNN) is employed to classify users based on electrocardiomatrices, a specific type of image derived from ECG signals. The proposed identification system is evaluated in multiple databases, achieving up to 99.84\% accuracy on healthy subjects, 97.09\% on patients with cardiovascular diseases, and 97.89% on mixed populations including both healthy and arrhythmic patients. The system also performs robustly under varying activity conditions, achieving 91.32% accuracy in scenarios involving different physical activities. These consistent and reliable results, with low error rates such as a FAR of 0.01% and FRR of 0.157% in the best cases, demonstrate the method's significant advancement in subject identification within healthcare systems. By considering patients' cardiovascular conditions and activity levels, the proposed approach addresses gaps in the existing literature, positioning it as a strong candidate for practical applications in real-world healthcare settings.
Related papers
- Integrating Deep Learning with Fundus and Optical Coherence Tomography for Cardiovascular Disease Prediction [47.7045293755736]
Early identification of patients at risk of cardiovascular diseases (CVD) is crucial for effective preventive care, reducing healthcare burden, and improving patients' quality of life.
This study demonstrates the potential of retinal optical coherence tomography ( OCT) imaging combined with fundus photographs for identifying future adverse cardiac events.
We propose a novel binary classification network based on a Multi-channel Variational Autoencoder (MCVAE), which learns a latent embedding of patients' fundus and OCT images to classify individuals into two groups: those likely to develop CVD in the future and those who are not.
arXiv Detail & Related papers (2024-10-18T12:37:51Z) - SSSD-ECG-nle: New Label Embeddings with Structured State-Space Models for ECG generation [0.0]
Diffusion models have made significant progress in recent years, creating the possibility for synthesizing data comparable to the real one.
We propose the SSSD-ECG-nle architecture based on SSSD-ECG with a modified conditioning mechanism and demonstrate its efficiency on downstream tasks.
arXiv Detail & Related papers (2024-07-15T16:31:25Z) - Anomaly Detection in Electrocardiograms: Advancing Clinical Diagnosis Through Self-Supervised Learning [32.37717219026923]
Existing systems often miss rare cardiac anomalies that could be precursors to serious, life-threatening issues or alterations in the cardiac macro/microstructure.
We focus on self-supervised anomaly detection (AD), training exclusively on normal ECGs to recognize deviations indicating anomalies.
We introduce a novel self-supervised learning framework for ECG AD, utilizing a vast dataset of normal ECGs to autonomously detect and localize cardiac anomalies.
arXiv Detail & Related papers (2024-04-07T12:15:53Z) - EKGNet: A 10.96{\mu}W Fully Analog Neural Network for Intra-Patient
Arrhythmia Classification [79.7946379395238]
We present an integrated approach by combining analog computing and deep learning for electrocardiogram (ECG) arrhythmia classification.
We propose EKGNet, a hardware-efficient and fully analog arrhythmia classification architecture that archives high accuracy with low power consumption.
arXiv Detail & Related papers (2023-10-24T02:37:49Z) - Identifying Ventricular Arrhythmias and Their Predictors by Applying
Machine Learning Methods to Electronic Health Records in Patients With
Hypertrophic Cardiomyopathy(HCM-VAr-Risk Model) [0.3811495093928132]
This is the first application of machine learning for identifying hypertrophic cardiomyopathy patients with ventricular arrhythmias (VAr) using clinical attributes.
We evaluated 93 clinical variables, of which 22 proved predictive of VAr.
Our method identified 12 new predictors of VAr, in addition to 10 established SCD predictors.
arXiv Detail & Related papers (2021-09-19T20:11:07Z) - Estimation of atrial fibrillation from lead-I ECGs: Comparison with
cardiologists and machine learning model (CurAlive), a clinical validation
study [0.0]
This study presents a method to detect atrial fibrillation with lead-I ECGs using artificial intelligence.
The aim of the study is to compare the accuracy of the diagnoses estimated by cardiologists and artificial intelligence over lead-I ECGs.
arXiv Detail & Related papers (2021-04-15T12:50:16Z) - Identification of Ischemic Heart Disease by using machine learning
technique based on parameters measuring Heart Rate Variability [50.591267188664666]
In this study, 18 non-invasive features (age, gender, left ventricular ejection fraction and 15 obtained from HRV) of 243 subjects were used to train and validate a series of several ANN.
The best result was obtained using 7 input parameters and 7 hidden nodes with an accuracy of 98.9% and 82% for the training and validation dataset.
arXiv Detail & Related papers (2020-10-29T19:14:41Z) - Personalized pathology test for Cardio-vascular disease: Approximate
Bayesian computation with discriminative summary statistics learning [48.7576911714538]
We propose a platelet deposition model and an inferential scheme to estimate the biologically meaningful parameters using approximate computation.
This work opens up an unprecedented opportunity of personalized pathology test for CVD detection and medical treatment.
arXiv Detail & Related papers (2020-10-13T15:20:21Z) - Prediction of the onset of cardiovascular diseases from electronic
health records using multi-task gated recurrent units [51.14334174570822]
We propose a multi-task recurrent neural network with attention mechanism for predicting cardiovascular events from electronic health records.
The proposed approach is compared to a standard clinical risk predictor (QRISK) and machine learning alternatives using 5-year data from a NHS Foundation Trust.
arXiv Detail & Related papers (2020-07-16T17:43:13Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.