論文の概要: ALAN: Autonomously Exploring Robotic Agents in the Real World
- arxiv url: http://arxiv.org/abs/2302.06604v1
- Date: Mon, 13 Feb 2023 18:59:09 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-14 14:18:05.987621
- Title: ALAN: Autonomously Exploring Robotic Agents in the Real World
- Title(参考訳): ALAN:現実世界で自律的にロボットエージェントを探索
- Authors: Russell Mendonca, Shikhar Bahl, Deepak Pathak
- Abstract要約: ALANは自律的なロボットエージェントで、ほとんどトレーニングや対話の時間なしで現実世界でタスクを実行できる。
これは、物体の動きを反映し、ロボットの位置の変化を無視する環境変化を測定することで実現される。
我々は,ロボットが操作スキルを効率的に探索し,発見することを可能にするために,2つの異なる実世界のプレイキッチン設定に対するアプローチを評価した。
- 参考スコア(独自算出の注目度): 28.65531878636441
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Robotic agents that operate autonomously in the real world need to
continuously explore their environment and learn from the data collected, with
minimal human supervision. While it is possible to build agents that can learn
in such a manner without supervision, current methods struggle to scale to the
real world. Thus, we propose ALAN, an autonomously exploring robotic agent,
that can perform tasks in the real world with little training and interaction
time. This is enabled by measuring environment change, which reflects object
movement and ignores changes in the robot position. We use this metric directly
as an environment-centric signal, and also maximize the uncertainty of
predicted environment change, which provides agent-centric exploration signal.
We evaluate our approach on two different real-world play kitchen settings,
enabling a robot to efficiently explore and discover manipulation skills, and
perform tasks specified via goal images. Website at
https://robo-explorer.github.io/
- Abstract(参考訳): 現実世界で自律的に行動するロボットエージェントは、環境を継続的に探索し、収集したデータから学習する必要がある。
監督なしにそのような方法で学習できるエージェントを構築することは可能だが、現在の手法は現実世界にスケールするのに苦労している。
そこで本稿では,ロボットエージェントのalanを提案する。alanはロボットエージェントであり,訓練時間やインタラクション時間が少なく,現実世界でタスクを実行できる。
これは、物体の動きを反映し、ロボットの位置の変化を無視する環境変化を測定することで実現される。
我々は、この指標を直接環境中心の信号とし、エージェント中心の探索信号を提供する予測環境変化の不確かさを最大化する。
我々は,2つの実世界のプレイキッチン設定に対するアプローチを評価し,ロボットが操作スキルを効率的に探索し,発見し,目標画像を介して指定されたタスクを実行することを可能にする。
webサイトはhttps://robo-explorer.github.io/
関連論文リスト
- Grounding Robot Policies with Visuomotor Language Guidance [15.774237279917594]
ロボットポリシーを現在の状況に基盤付けるためのエージェントベースのフレームワークを提案する。
提案するフレームワークは、特定の役割のために設計された会話エージェントのセットで構成されている。
弊社のアプローチは、操作ポリシーを効果的にガイドし、成功率を大幅に向上させることを実証する。
論文 参考訳(メタデータ) (2024-10-09T02:00:37Z) - Language-guided Robust Navigation for Mobile Robots in Dynamically-changing Environments [26.209402619114353]
我々は、車輪付き移動ロボットを用いた人道案内のための具体的AIシステムを開発した。
本研究では,ロボットの意図した軌道に影響を与える環境変化を検出するため,ロボットの現在の計画を監視する手法を提案する。
この作業は、環境状態に関する情報を人間に提供する環境の持続的な監視を行う、精密農業や建設のようなアプリケーションを支援することができる。
論文 参考訳(メタデータ) (2024-09-28T21:30:23Z) - Flow as the Cross-Domain Manipulation Interface [73.15952395641136]
Im2Flow2Actは、現実世界のロボットのトレーニングデータを必要とせずに、ロボットが現実世界の操作スキルを習得することを可能にする。
Im2Flow2Actはフロー生成ネットワークとフロー条件ポリシーの2つのコンポーネントから構成される。
我々はIm2Flow2Actの様々な実世界のタスクにおいて、剛性、調音、変形可能なオブジェクトの操作を含む能力を実証する。
論文 参考訳(メタデータ) (2024-07-21T16:15:02Z) - Track2Act: Predicting Point Tracks from Internet Videos enables Generalizable Robot Manipulation [65.46610405509338]
我々は、ゼロショットロボット操作を可能にする汎用的な目標条件ポリシーを学習することを目指している。
私たちのフレームワークであるTrack2Actは、ゴールに基づいて将来のタイムステップで画像内のポイントがどのように動くかを予測する。
学習したトラック予測を残留ポリシーと組み合わせることで,多種多様な汎用ロボット操作が可能となることを示す。
論文 参考訳(メタデータ) (2024-05-02T17:56:55Z) - FOCUS: Object-Centric World Models for Robotics Manipulation [4.6956495676681484]
FOCUSは、オブジェクト中心の世界モデルを学ぶモデルベースのエージェントである。
オブジェクト中心の世界モデルにより、エージェントがより効率的にタスクを解くことができることを示す。
また、FOCUSが現実世界の環境でどのように採用されるかを示す。
論文 参考訳(メタデータ) (2023-07-05T16:49:06Z) - HomeRobot: Open-Vocabulary Mobile Manipulation [107.05702777141178]
Open-Vocabulary Mobile Manipulation (OVMM) は、目に見えない環境で任意のオブジェクトを選択し、命令された場所に配置する問題である。
HomeRobotには2つのコンポーネントがある。シミュレーションコンポーネントは、新しい高品質のマルチルームホーム環境に、大規模で多様なキュレートされたオブジェクトセットを使用する。
論文 参考訳(メタデータ) (2023-06-20T14:30:32Z) - Affordances from Human Videos as a Versatile Representation for Robotics [31.248842798600606]
我々は、人間がどこでどのように対話するかを推定する視覚的余裕モデルを訓練する。
これらの行動割当の構造は、ロボットが多くの複雑なタスクを直接実行できるようにする。
私たちは、VRBと呼ばれる4つの現実世界環境、10以上のタスクと2つのロボットプラットフォームにおいて、私たちのアプローチの有効性を示します。
論文 参考訳(メタデータ) (2023-04-17T17:59:34Z) - Real-World Humanoid Locomotion with Reinforcement Learning [92.85934954371099]
実世界におけるヒューマノイド移動に対する完全学習型アプローチを提案する。
コントローラーは様々な屋外の地形の上を歩けるし、外乱に対して頑丈で、状況に応じて適応できる。
論文 参考訳(メタデータ) (2023-03-06T18:59:09Z) - Dual-Arm Adversarial Robot Learning [0.6091702876917281]
ロボット学習のためのプラットフォームとしてデュアルアーム設定を提案する。
このセットアップの潜在的なメリットと、追求できる課題と研究の方向性について論じる。
論文 参考訳(メタデータ) (2021-10-15T12:51:57Z) - Rapid Exploration for Open-World Navigation with Latent Goal Models [78.45339342966196]
多様なオープンワールド環境における自律的な探索とナビゲーションのためのロボット学習システムについて述べる。
本手法のコアとなるのは、画像の非パラメトリックトポロジカルメモリとともに、距離と行動の学習された潜在変数モデルである。
学習方針を規則化するために情報ボトルネックを使用し、(i)目標のコンパクトな視覚的表現、(ii)一般化能力の向上、(iii)探索のための実行可能な目標をサンプリングするためのメカニズムを提供する。
論文 参考訳(メタデータ) (2021-04-12T23:14:41Z) - SAPIEN: A SimulAted Part-based Interactive ENvironment [77.4739790629284]
SAPIENは現実的で物理に富んだシミュレートされた環境であり、音声オブジェクトのための大規模なセットをホストしている。
部品検出と動作特性認識のための最先端の視覚アルゴリズムの評価を行い,ロボットインタラクションタスクの実証を行った。
論文 参考訳(メタデータ) (2020-03-19T00:11:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。