論文の概要: Towards Explainable Visual Anomaly Detection
- arxiv url: http://arxiv.org/abs/2302.06670v1
- Date: Mon, 13 Feb 2023 20:17:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-15 17:13:20.883714
- Title: Towards Explainable Visual Anomaly Detection
- Title(参考訳): 説明可能な視覚異常検出に向けて
- Authors: Yizhou Wang, Dongliang Guo, Sheng Li, Yun Fu
- Abstract要約: 画像やビデオを含む視覚データの異常検出とローカライゼーションは、機械学習のアカデミックと実世界のシナリオの適用において非常に重要である。
近年の視覚異常検出技術の急速な発展にもかかわらず、これらのブラックボックスモデルの解釈や、なぜ異常を区別できるのかの合理的な説明は乏しい。
- 参考スコア(独自算出の注目度): 57.867501847766306
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Anomaly detection and localization of visual data, including images and
videos, are of great significance in both machine learning academia and applied
real-world scenarios. Despite the rapid development of visual anomaly detection
techniques in recent years, the interpretations of these black-box models and
reasonable explanations of why anomalies can be distinguished out are scarce.
This paper provides the first survey concentrated on explainable visual anomaly
detection methods. We first introduce the basic background of image-level
anomaly detection and video-level anomaly detection, followed by the current
explainable approaches for visual anomaly detection. Then, as the main content
of this survey, a comprehensive and exhaustive literature review of explainable
anomaly detection methods for both images and videos is presented. Finally, we
discuss several promising future directions and open problems to explore on the
explainability of visual anomaly detection.
- Abstract(参考訳): 画像やビデオを含む視覚データの異常検出とローカライゼーションは、機械学習のアカデミックと実世界のシナリオの両方において非常に重要である。
近年、視覚異常検出技術の急速な発展にもかかわらず、これらのブラックボックスモデルの解釈や、異常を区別できる理由の合理的な説明は少ない。
本稿では,説明可能な視覚異常検出法に注目した最初の調査を行う。
まず,画像レベルの異常検出の基礎的背景と映像レベルの異常検出について紹介する。
次に,本調査の主な内容として,画像とビデオの両方に対する説明可能な異常検出方法に関する総合的かつ徹底的な文献レビューを紹介する。
最後に,視覚異常検出の可否を説明するために,将来有望ないくつかの方向と課題について論じる。
関連論文リスト
- VANE-Bench: Video Anomaly Evaluation Benchmark for Conversational LMMs [64.60035916955837]
VANE-Benchはビデオの異常や矛盾を検出するためのビデオLMMの熟練度を評価するために設計されたベンチマークである。
我々のデータセットは、既存の最先端のテキスト・ビデオ生成モデルを用いて合成された一連のビデオから構成される。
我々は、このベンチマークタスクにおいて、オープンソースとクローズドソースの両方で既存の9つのビデオLMMを評価し、ほとんどのモデルが微妙な異常を効果的に識別するのに困難に直面することを発見した。
論文 参考訳(メタデータ) (2024-06-14T17:59:01Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
本稿では,CLIPモデルを用いた医用異常検出のための軽量な多レベル適応と比較フレームワークを提案する。
提案手法では,複数の残像アダプタを事前学習した視覚エンコーダに統合し,視覚的特徴の段階的向上を実現する。
医学的異常検出ベンチマーク実験により,本手法が現在の最先端モデルを大幅に上回っていることが示された。
論文 参考訳(メタデータ) (2024-03-19T09:28:19Z) - Open-Vocabulary Video Anomaly Detection [57.552523669351636]
監視の弱いビデオ異常検出(VAD)は、ビデオフレームが正常であるか異常であるかを識別するためにビデオレベルラベルを利用する際、顕著な性能を達成した。
近年の研究は、より現実的な、オープンセットのVADに取り組み、異常や正常なビデオから見えない異常を検出することを目的としている。
本稿ではさらに一歩前進し、未確認および未確認の異常を検知・分類するために訓練済みの大規模モデルを活用することを目的とした、オープン語彙ビデオ異常検出(OVVAD)について検討する。
論文 参考訳(メタデータ) (2023-11-13T02:54:17Z) - PAD: A Dataset and Benchmark for Pose-agnostic Anomaly Detection [28.973078719467516]
我々は,多目的異常検出データセットとPose-Agnostic Anomaly Detectionベンチマークを開発する。
具体的には、さまざまなポーズと、シミュレーションと実環境の両方で高品質で多様な3D異常を持つ20個の複合形状のレゴ玩具を用いて、MADを構築します。
また,ポーズに依存しない異常検出のために,MADを用いて訓練した新しいOmniposeADを提案する。
論文 参考訳(メタデータ) (2023-10-11T17:59:56Z) - Understanding the Challenges and Opportunities of Pose-based Anomaly
Detection [2.924868086534434]
ポーズベースの異常検出(Pose-based anomaly detection)は、ビデオフレームから抽出された人間のポーズを調べることによって、異常な出来事や行動を検出するビデオ分析技術である。
本研究では、ポーズに基づく異常検出の難しさをよりよく理解するために、2つのよく知られたビデオ異常データセットの特徴を分析し、定量化する。
これらの実験は、ポーズベースの異常検出と現在利用可能なデータセットをより理解する上で有益であると考えています。
論文 参考訳(メタデータ) (2023-03-09T18:09:45Z) - Catching Both Gray and Black Swans: Open-set Supervised Anomaly
Detection [90.32910087103744]
ラベル付き異常な例は、多くの現実世界のアプリケーションでよく見られる。
これらの異常例は、アプリケーション固有の異常について貴重な知識を提供する。
トレーニング中に見られる異常は、可能なあらゆる種類の異常を説明できないことが多い。
本稿では,オープンセット型教師付き異常検出に取り組む。
論文 参考訳(メタデータ) (2022-03-28T05:21:37Z) - A Survey of Visual Sensory Anomaly Detection [53.23336329817023]
視覚感覚異常検出(AD)はコンピュータビジョンにおいて重要な問題である。
視覚感覚のADとカテゴリーを,異常の形で3段階にまとめて検討した。
論文 参考訳(メタデータ) (2022-02-14T19:50:03Z) - Approaches Toward Physical and General Video Anomaly Detection [0.0]
ビデオにおける異常検出は、多くの製造、保守、実生活環境における誤動作の自動検出を可能にする。
6つの異なるビデオクラスを含む物理異常軌道(Physal Anomalous Trajectory)データセットを紹介する。
我々は、高度に可変なシーンで異常なアクティビティを発見すべきという、さらに難しいベンチマークを提案する。
論文 参考訳(メタデータ) (2021-12-14T18:57:44Z) - A Critical Study on the Recent Deep Learning Based Semi-Supervised Video
Anomaly Detection Methods [3.198144010381572]
本稿では,この分野の研究者を新たな視点に紹介し,最近の深層学習に基づく半教師付きビデオ異常検出手法についてレビューする。
私たちのゴールは、より効果的なビデオ異常検出方法の開発を支援することです。
論文 参考訳(メタデータ) (2021-11-02T14:00:33Z) - Self-Supervised Representation Learning for Visual Anomaly Detection [9.642625267699488]
本稿では,画像映像における異常検出の問題点を考察し,新しい視覚的異常検出手法を提案する。
光フロー情報を用いることなくビデオフレーム間の時間的コヒーレンスを学習するための,簡単なセルフスーパービジョンアプローチを提案する。
この直感的なアプローチは、UCF101およびILSVRC2015ビデオデータセット上の画像やビデオの多くの方法と比較して、視覚異常検出の優れた性能を示している。
論文 参考訳(メタデータ) (2020-06-17T04:37:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。