Kernelized Diffusion maps
- URL: http://arxiv.org/abs/2302.06757v1
- Date: Mon, 13 Feb 2023 23:54:36 GMT
- Title: Kernelized Diffusion maps
- Authors: Loucas Pillaud-Vivien and Francis Bach
- Abstract summary: In this article, we build a different estimator of the Laplacian, via a reproducing kernel Hilbert space method.
We provide non-asymptotic statistical rates proving that the kernel estimator we build can circumvent the curse of dimensionality.
- Score: 2.817412580574242
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Spectral clustering and diffusion maps are celebrated dimensionality
reduction algorithms built on eigen-elements related to the diffusive structure
of the data. The core of these procedures is the approximation of a Laplacian
through a graph kernel approach, however this local average construction is
known to be cursed by the high-dimension d. In this article, we build a
different estimator of the Laplacian, via a reproducing kernel Hilbert space
method, which adapts naturally to the regularity of the problem. We provide
non-asymptotic statistical rates proving that the kernel estimator we build can
circumvent the curse of dimensionality. Finally we discuss techniques
(Nystr\"om subsampling, Fourier features) that enable to reduce the
computational cost of the estimator while not degrading its overall
performance.
Related papers
- Diffusion-based Semi-supervised Spectral Algorithm for Regression on Manifolds [2.0649432688817444]
We introduce a novel diffusion-based spectral algorithm to tackle regression analysis on high-dimensional data.
Our method uses the local estimation property of heat kernel, offering an adaptive, data-driven approach to overcome this obstacle.
Our algorithm performs in an entirely data-driven manner, operating directly within the intrinsic manifold structure of the data.
arXiv Detail & Related papers (2024-10-18T15:29:04Z) - Sketching the Heat Kernel: Using Gaussian Processes to Embed Data [4.220336689294244]
We introduce a novel, non-deterministic method for embedding data in low-dimensional Euclidean space based on realizations of a Gaussian process depending on the geometry of the data.
Our method demonstrates further advantage in its robustness to outliers.
arXiv Detail & Related papers (2024-03-01T22:56:19Z) - Gaussian Process Regression under Computational and Epistemic Misspecification [4.5656369638728656]
In large data applications, computational costs can be reduced using low-rank or sparse approximations of the kernel.
This paper investigates the effect of such kernel approximations on the element error.
arXiv Detail & Related papers (2023-12-14T18:53:32Z) - Curvature-Independent Last-Iterate Convergence for Games on Riemannian
Manifolds [77.4346324549323]
We show that a step size agnostic to the curvature of the manifold achieves a curvature-independent and linear last-iterate convergence rate.
To the best of our knowledge, the possibility of curvature-independent rates and/or last-iterate convergence has not been considered before.
arXiv Detail & Related papers (2023-06-29T01:20:44Z) - Posterior and Computational Uncertainty in Gaussian Processes [52.26904059556759]
Gaussian processes scale prohibitively with the size of the dataset.
Many approximation methods have been developed, which inevitably introduce approximation error.
This additional source of uncertainty, due to limited computation, is entirely ignored when using the approximate posterior.
We develop a new class of methods that provides consistent estimation of the combined uncertainty arising from both the finite number of data observed and the finite amount of computation expended.
arXiv Detail & Related papers (2022-05-30T22:16:25Z) - Experimental Design for Linear Functionals in Reproducing Kernel Hilbert
Spaces [102.08678737900541]
We provide algorithms for constructing bias-aware designs for linear functionals.
We derive non-asymptotic confidence sets for fixed and adaptive designs under sub-Gaussian noise.
arXiv Detail & Related papers (2022-05-26T20:56:25Z) - Nonparametric learning of kernels in nonlocal operators [6.314604944530131]
We provide a rigorous identifiability analysis and convergence study for the learning of kernels in nonlocal operators.
We propose a nonparametric regression algorithm with a novel data adaptive RKHS Tikhonov regularization method based on the function space of identifiability.
arXiv Detail & Related papers (2022-05-23T02:47:55Z) - Trajectory Inference via Mean-field Langevin in Path Space [0.17205106391379024]
Trajectory inference aims at recovering the dynamics of a population from snapshots of its temporal marginals.
A min-entropy estimator relative to the Wiener measure in path space was introduced by Lavenant et al.
arXiv Detail & Related papers (2022-05-14T23:13:00Z) - Optimal policy evaluation using kernel-based temporal difference methods [78.83926562536791]
We use kernel Hilbert spaces for estimating the value function of an infinite-horizon discounted Markov reward process.
We derive a non-asymptotic upper bound on the error with explicit dependence on the eigenvalues of the associated kernel operator.
We prove minimax lower bounds over sub-classes of MRPs.
arXiv Detail & Related papers (2021-09-24T14:48:20Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
We introduce a new scalable variational Gaussian process approximation which provides a high fidelity approximation while retaining general applicability.
We demonstrate that, on a range of regression and classification problems, our approach can exploit input space symmetries such as translations and reflections.
Notably, our approach achieves state-of-the-art results on CIFAR-10 among pure GP models.
arXiv Detail & Related papers (2021-06-10T18:17:57Z) - Manifold Learning via Manifold Deflation [105.7418091051558]
dimensionality reduction methods provide a valuable means to visualize and interpret high-dimensional data.
Many popular methods can fail dramatically, even on simple two-dimensional Manifolds.
This paper presents an embedding method for a novel, incremental tangent space estimator that incorporates global structure as coordinates.
Empirically, we show our algorithm recovers novel and interesting embeddings on real-world and synthetic datasets.
arXiv Detail & Related papers (2020-07-07T10:04:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.