Trainability Enhancement of Parameterized Quantum Circuits via Reduced-Domain Parameter Initialization
- URL: http://arxiv.org/abs/2302.06858v3
- Date: Tue, 05 Nov 2024 03:38:51 GMT
- Title: Trainability Enhancement of Parameterized Quantum Circuits via Reduced-Domain Parameter Initialization
- Authors: Yabo Wang, Bo Qi, Chris Ferrie, Daoyi Dong,
- Abstract summary: We show that by reducing the initial domain of each parameter proportional to the square root of circuit depth, the magnitude of the cost gradient decays at most inversely to qubit count and circuit depth.
This strategy can protect specific quantum neural networks from exponentially many spurious local minima.
- Score: 3.031137751464259
- License:
- Abstract: Parameterized quantum circuits (PQCs) have been widely used as a machine learning model to explore the potential of achieving quantum advantages for various tasks. However, training PQCs is notoriously challenging owing to the phenomenon of plateaus and/or the existence of (exponentially) many spurious local minima. To enhance trainability, in this work we propose an efficient parameter initialization strategy with theoretical guarantees. We prove that by reducing the initial domain of each parameter inversely proportional to the square root of circuit depth, the magnitude of the cost gradient decays at most polynomially with respect to qubit count and circuit depth. Our theoretical results are substantiated through numerical simulations of variational quantum eigensolver tasks. Moreover, we demonstrate that the reduced-domain initialization strategy can protect specific quantum neural networks from exponentially many spurious local minima. Our results highlight the significance of an appropriate parameter initialization strategy, offering insights to enhance the trainability and convergence of variational quantum algorithms.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Avoiding barren plateaus via Gaussian Mixture Model [6.0599055267355695]
Variational quantum algorithms are one of the most representative algorithms in quantum computing.
They face challenges when dealing with large numbers of qubits, deep circuit layers, or global cost functions, making them often untrainable.
arXiv Detail & Related papers (2024-02-21T03:25:26Z) - Non-asymptotic Approximation Error Bounds of Parameterized Quantum Circuits [16.460585387762478]
ized quantum circuits (PQCs) have emerged as a promising approach for quantum neural networks.
This paper investigates the expressivity of PQCs for approximating general function classes.
We establish the first non-asymptotic approximation error bounds for these functions in terms of the number of qubits, quantum circuit depth, and number of trainable parameters.
arXiv Detail & Related papers (2023-10-11T14:29:11Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - Bayesian Learning of Parameterised Quantum Circuits [0.0]
We take a probabilistic point of view and reformulate the classical optimisation as an approximation of a Bayesian posterior.
We describe a dimension reduction strategy based on a maximum a posteriori point estimate with a Laplace prior.
Experiments on the Quantinuum H1-2 computer show that the resulting circuits are faster to execute and less noisy than circuits trained without a gradient.
arXiv Detail & Related papers (2022-06-15T14:20:14Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
We present a technique that pinpoints the sections of a quantum circuit that affect the circuit output the most.
We demonstrate the practicality and efficacy of the proposed technique by applying it to example algorithmic circuits implemented on IBM quantum machines.
arXiv Detail & Related papers (2022-04-12T19:39:31Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - FLIP: A flexible initializer for arbitrarily-sized parametrized quantum
circuits [105.54048699217668]
We propose a FLexible Initializer for arbitrarily-sized Parametrized quantum circuits.
FLIP can be applied to any family of PQCs, and instead of relying on a generic set of initial parameters, it is tailored to learn the structure of successful parameters.
We illustrate the advantage of using FLIP in three scenarios: a family of problems with proven barren plateaus, PQC training to solve max-cut problem instances, and PQC training for finding the ground state energies of 1D Fermi-Hubbard models.
arXiv Detail & Related papers (2021-03-15T17:38:33Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.