All-microwave manipulation of superconducting qubits with a
fixed-frequency transmon coupler
- URL: http://arxiv.org/abs/2302.06930v3
- Date: Sun, 6 Aug 2023 04:31:38 GMT
- Title: All-microwave manipulation of superconducting qubits with a
fixed-frequency transmon coupler
- Authors: Shotaro Shirai, Yuta Okubo, Kohei Matsuura, Alto Osada, Yasunobu
Nakamura, Atsushi Noguchi
- Abstract summary: All-microwave control of superconducting quantum computing circuits is advantageous for minimizing the noise channels and wiring costs.
We introduce a swap interaction between two data transmons assisted by the third-order nonlinearity of a coupler transmon under a microwave drive.
- Score: 0.685068326729525
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: All-microwave control of fixed-frequency superconducting quantum computing
circuits is advantageous for minimizing the noise channels and wiring costs.
Here we introduce a swap interaction between two data transmons assisted by the
third-order nonlinearity of a coupler transmon under a microwave drive. We
model the interaction analytically and numerically and use it to implement an
all-microwave controlled-Z gate. The gate based on the coupler-assisted swap
transition maintains high drive efficiency and small residual interaction over
a wide range of detuning between the data transmons.
Related papers
- Microwave-activated two-qubit gates for fixed-coupling and fixed-frequency transmon qubits [6.175888443499163]
This study proposes a microwave-activated two-qubit gate scheme for two fixed-frequency transmon qubits coupled via a fixed-frequency transmon coupler.
We show that the gate fidelity exceeding 0.999 can be achieved within 150 ns, excluding decoherence effects.
arXiv Detail & Related papers (2024-10-10T11:04:34Z) - Demonstration of RIP gates in a quantum processor with negligible transverse coupling [0.0]
We demonstrate a novel multi-mode linear bus interferometer (LBI) coupler in a six qubit superconducting quantum processor.
A key feature of this coupler is an engineered multi-path interference which eliminates transverse coupling between qubits over a wide frequency range.
We achieve good simultaneous single qubit gate operation and low ZZ rates (below 600 Hz) across the device without staggering qubit frequencies.
arXiv Detail & Related papers (2024-06-17T17:31:37Z) - Enhancing the Coherence of Superconducting Quantum Bits with Electric
Fields [62.997667081978825]
We show that qubit coherence can be improved by tuning defects away from the qubit resonance using an applied DC-electric field.
We also discuss how local gate electrodes can be implemented in superconducting quantum processors to enable simultaneous in-situ coherence optimization of individual qubits.
arXiv Detail & Related papers (2022-08-02T16:18:30Z) - Microwave-activated gates between a fluxonium and a transmon qubit [59.95978973946985]
We propose and analyze two types of microwave-activated gates between a fluxonium and a transmon qubit.
For a medium-frequency fluxonium qubit, the transmon-fluxonium system allows for a cross-resonance effect mediated by the higher levels of the fluxonium.
A fast microwave CPHASE gate can be implemented using the higher levels of the fluxonium.
arXiv Detail & Related papers (2022-06-13T14:34:11Z) - Extensible circuit-QED architecture via amplitude- and
frequency-variable microwaves [52.77024349608834]
We introduce a circuit-QED architecture combining fixed-frequency qubits and microwave-driven couplers.
Drive parameters appear as tunable knobs enabling selective two-qubit coupling and coherent-error suppression.
arXiv Detail & Related papers (2022-04-17T22:49:56Z) - Cancelling microwave crosstalk with fixed-frequency qubits [6.661976511211463]
We propose and demonstrate a method based on AC Stark effect for calibrating the microwave signal crosstalk.
The optimal compensation parameters can be reliably identified from a well-defined interference pattern.
We implement the method on an array of 7 superconducting qubits, and show its effectiveness in removing the majority of crosstalk errors.
arXiv Detail & Related papers (2022-04-06T17:26:47Z) - High fidelity two-qubit gates on fluxoniums using a tunable coupler [47.187609203210705]
Superconducting fluxonium qubits provide a promising alternative to transmons on the path toward large-scale quantum computing.
A major challenge for multi-qubit fluxonium devices is the experimental demonstration of a scalable crosstalk-free multi-qubit architecture.
Here, we present a two-qubit fluxonium-based quantum processor with a tunable coupler element.
arXiv Detail & Related papers (2022-03-30T13:44:52Z) - Entangling transmons with low-frequency protected superconducting qubits [0.0]
We propose and study a scheme for entangling a tunable transmon with a Cooper-pair parity-protected qubit.
We show that non-computational states can mediate a two-qubit entangling gate that preserves the Cooper-pair parity independent of the detailed pulse sequence.
Our results suggest that standard high-precision gate calibration protocols could be repurposed for operating hybrid qubit devices.
arXiv Detail & Related papers (2022-03-08T19:00:01Z) - Superconducting coupler with exponentially large on-off ratio [68.8204255655161]
Tunable two-qubit couplers offer an avenue to mitigate errors in multiqubit superconducting quantum processors.
Most couplers operate in a narrow frequency band and target specific couplings, such as the spurious $ZZ$ interaction.
We introduce a superconducting coupler that alleviates these limitations by suppressing all two-qubit interactions with an exponentially large on-off ratio.
arXiv Detail & Related papers (2021-07-21T03:03:13Z) - Hardware-Efficient Microwave-Activated Tunable Coupling Between
Superconducting Qubits [0.0]
We realize a tunable $ZZ$ interaction between two transmon qubits with fixed frequencies and fixed coupling.
Because both transmons are driven, it is resilient to microwave crosstalk.
We apply this interaction to implement a controlled phase (CZ) gate with a gate fidelity of $99.43(1)%$ as measured by cycle benchmarking.
arXiv Detail & Related papers (2021-05-12T01:06:08Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.