Cancelling microwave crosstalk with fixed-frequency qubits
- URL: http://arxiv.org/abs/2204.02946v1
- Date: Wed, 6 Apr 2022 17:26:47 GMT
- Title: Cancelling microwave crosstalk with fixed-frequency qubits
- Authors: Wuerkaixi Nuerbolati, Zhikun Han, Ji Chu, Yuxuan Zhou, Xinsheng Tan,
Yang Yu, Song Liu, and Fei Yan
- Abstract summary: We propose and demonstrate a method based on AC Stark effect for calibrating the microwave signal crosstalk.
The optimal compensation parameters can be reliably identified from a well-defined interference pattern.
We implement the method on an array of 7 superconducting qubits, and show its effectiveness in removing the majority of crosstalk errors.
- Score: 6.661976511211463
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Scalable quantum information processing requires that modular gate operations
can be executed in parallel. The presence of crosstalk decreases the individual
addressability, causing erroneous results during simultaneous operations. For
superconducting qubits which operate in the microwave regime, electromagnetic
isolation is often limited due to design constraints, leading to signal
crosstalk that can deteriorate the quality of simultaneous gate operations.
Here, we propose and demonstrate a method based on AC Stark effect for
calibrating the microwave signal crosstalk. The method is suitable for
processors based on fixed-frequency qubits which are known for high coherence
and simple control. The optimal compensation parameters can be reliably
identified from a well-defined interference pattern. We implement the method on
an array of 7 superconducting qubits, and show its effectiveness in removing
the majority of crosstalk errors.
Related papers
- Microwave-activated two-qubit gates for fixed-coupling and fixed-frequency transmon qubits [6.175888443499163]
This study proposes a microwave-activated two-qubit gate scheme for two fixed-frequency transmon qubits coupled via a fixed-frequency transmon coupler.
We show that the gate fidelity exceeding 0.999 can be achieved within 150 ns, excluding decoherence effects.
arXiv Detail & Related papers (2024-10-10T11:04:34Z) - Individual-atom control in array through phase modulation [9.783030573753894]
We introduce a method to engineer single qubit gates through phase-modulated continuous driving.
Distinct qubits can be individually addressed to high accuracy by simply tuning the modulation parameters.
Our results pave the way to scaling up atom-array platforms with low-error parallel-gate operations.
arXiv Detail & Related papers (2023-10-30T17:04:53Z) - Enhancing Dispersive Readout of Superconducting Qubits Through Dynamic
Control of the Dispersive Shift: Experiment and Theory [47.00474212574662]
A superconducting qubit is coupled to a large-bandwidth readout resonator.
We show a beyond-state-of-the-art two-state-readout error of only 0.25,%$ in 100 ns integration time.
The presented results are expected to further boost the performance of new and existing algorithms and protocols.
arXiv Detail & Related papers (2023-07-15T10:30:10Z) - All-microwave manipulation of superconducting qubits with a
fixed-frequency transmon coupler [0.685068326729525]
All-microwave control of superconducting quantum computing circuits is advantageous for minimizing the noise channels and wiring costs.
We introduce a swap interaction between two data transmons assisted by the third-order nonlinearity of a coupler transmon under a microwave drive.
arXiv Detail & Related papers (2023-02-14T09:34:20Z) - An integrated microwave-to-optics interface for scalable quantum
computing [47.187609203210705]
We present a new design for an integrated transducer based on a superconducting resonator coupled to a silicon photonic cavity.
We experimentally demonstrate its unique performance and potential for simultaneously realizing all of the above conditions.
Our device couples directly to a 50-Ohm transmission line and can easily be scaled to a large number of transducers on a single chip.
arXiv Detail & Related papers (2022-10-27T18:05:01Z) - Enhancing the Coherence of Superconducting Quantum Bits with Electric
Fields [62.997667081978825]
We show that qubit coherence can be improved by tuning defects away from the qubit resonance using an applied DC-electric field.
We also discuss how local gate electrodes can be implemented in superconducting quantum processors to enable simultaneous in-situ coherence optimization of individual qubits.
arXiv Detail & Related papers (2022-08-02T16:18:30Z) - Extensible circuit-QED architecture via amplitude- and
frequency-variable microwaves [52.77024349608834]
We introduce a circuit-QED architecture combining fixed-frequency qubits and microwave-driven couplers.
Drive parameters appear as tunable knobs enabling selective two-qubit coupling and coherent-error suppression.
arXiv Detail & Related papers (2022-04-17T22:49:56Z) - High fidelity two-qubit gates on fluxoniums using a tunable coupler [47.187609203210705]
Superconducting fluxonium qubits provide a promising alternative to transmons on the path toward large-scale quantum computing.
A major challenge for multi-qubit fluxonium devices is the experimental demonstration of a scalable crosstalk-free multi-qubit architecture.
Here, we present a two-qubit fluxonium-based quantum processor with a tunable coupler element.
arXiv Detail & Related papers (2022-03-30T13:44:52Z) - Scalable Method for Eliminating Residual $ZZ$ Interaction between
Superconducting Qubits [14.178204625914194]
We show a practically approach for complete cancellation of residual $ZZ$ interaction between fixed-frequency transmon qubits.
We verify the cancellation performance by measuring vanishing two-qubit entangling phases and $ZZ$ correlations.
Our method allows independent addressability of each qubit-qubit connection, and is applicable to both nontunable and tunable couplers.
arXiv Detail & Related papers (2021-11-26T02:04:49Z) - Superconducting coupler with exponentially large on-off ratio [68.8204255655161]
Tunable two-qubit couplers offer an avenue to mitigate errors in multiqubit superconducting quantum processors.
Most couplers operate in a narrow frequency band and target specific couplings, such as the spurious $ZZ$ interaction.
We introduce a superconducting coupler that alleviates these limitations by suppressing all two-qubit interactions with an exponentially large on-off ratio.
arXiv Detail & Related papers (2021-07-21T03:03:13Z) - Hardware-Efficient Microwave-Activated Tunable Coupling Between
Superconducting Qubits [0.0]
We realize a tunable $ZZ$ interaction between two transmon qubits with fixed frequencies and fixed coupling.
Because both transmons are driven, it is resilient to microwave crosstalk.
We apply this interaction to implement a controlled phase (CZ) gate with a gate fidelity of $99.43(1)%$ as measured by cycle benchmarking.
arXiv Detail & Related papers (2021-05-12T01:06:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.