論文の概要: A Bandit Approach to Online Pricing for Heterogeneous Edge Resource
Allocation
- arxiv url: http://arxiv.org/abs/2302.06953v1
- Date: Tue, 14 Feb 2023 10:21:14 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-15 15:45:28.462860
- Title: A Bandit Approach to Online Pricing for Heterogeneous Edge Resource
Allocation
- Title(参考訳): 不均一エッジリソース割り当てのためのオンライン価格のバンドアプローチ
- Authors: Jiaming Cheng, Duong Thuy Anh Nguyen, Lele Wang, Duong Tung Nguyen,
Vijay K. Bhargava
- Abstract要約: ヘテロジニアスなエッジリソース割り当てのための2つの新しいオンライン価格設定機構が提案されている。
このメカニズムはリアルタイムで動作し、需要分布に関する事前の知識を必要としない。
提案した価格体系では, 利用者が好みのリソースを選択し, 支払うことができ, 観測された履歴データに基づいて動的に資源価格を調整できる。
- 参考スコア(独自算出の注目度): 8.089950414444115
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Edge Computing (EC) offers a superior user experience by positioning cloud
resources in close proximity to end users. The challenge of allocating edge
resources efficiently while maximizing profit for the EC platform remains a
sophisticated problem, especially with the added complexity of the online
arrival of resource requests. To address this challenge, we propose to cast the
problem as a multi-armed bandit problem and develop two novel online pricing
mechanisms, the Kullback-Leibler Upper Confidence Bound (KL-UCB) algorithm and
the Min-Max Optimal algorithm, for heterogeneous edge resource allocation.
These mechanisms operate in real-time and do not require prior knowledge of
demand distribution, which can be difficult to obtain in practice. The proposed
posted pricing schemes allow users to select and pay for their preferred
resources, with the platform dynamically adjusting resource prices based on
observed historical data. Numerical results show the advantages of the proposed
mechanisms compared to several benchmark schemes derived from traditional
bandit algorithms, including the Epsilon-Greedy, basic UCB, and Thompson
Sampling algorithms.
- Abstract(参考訳): Edge Computing(EC)は、エンドユーザに近いクラウドリソースを配置することで、優れたユーザエクスペリエンスを提供します。
ECプラットフォームの利益を最大化しながらエッジリソースを効率的に割り当てることの課題は、特にリソース要求のオンライン到着の複雑さが増すことによって、高度な問題である。
そこで本研究では,マルチアームバンディット問題としてこの問題を提起し,kl-ucbアルゴリズムとmin-max最適アルゴリズムという2つの新しいオンライン価格体系を考案し,異種エッジリソース割り当てを実現することを提案する。
これらのメカニズムはリアルタイムで動作し、需要分布に関する事前の知識を必要としない。
提案した価格体系では, 利用者が好みのリソースを選択し, 支払うことができ, 観測された履歴データに基づいて動的に資源価格を調整できる。
Epsilon-Greedy, Basic UCB, Thompson Samplingなど, 従来のバンディットアルゴリズムから派生したベンチマーク手法と比較して, 提案手法の利点を示す。
関連論文リスト
- Improving Portfolio Optimization Results with Bandit Networks [0.0]
非定常環境向けに設計された新しいBanditアルゴリズムを導入・評価する。
まず,Adaptive Discounted Thompson Smpling (ADTS)アルゴリズムを提案する。
そこで我々は,この手法を,CADTSアルゴリズムを導入してポートフォリオ最適化問題に拡張する。
論文 参考訳(メタデータ) (2024-10-05T16:17:31Z) - A Federated Online Restless Bandit Framework for Cooperative Resource Allocation [23.698976872351576]
MRPの未知系力学を用いた協調資源配分問題について検討する。
我々は、このマルチエージェントオンラインRMAB問題を解決するために、フェデレートトンプソン対応Whittle Index(FedTSWI)アルゴリズムを作成した。
数値計算の結果,提案アルゴリズムは,ベースラインと比較して,$mathcalO(sqrtTlog(T))$の高速収束率と性能の向上を実現している。
論文 参考訳(メタデータ) (2024-06-12T08:34:53Z) - Online Learning under Budget and ROI Constraints via Weak Adaptivity [57.097119428915796]
制約付きオンライン学習問題に対する既存の原始双対アルゴリズムは、2つの基本的な仮定に依存している。
このような仮定は、標準の原始双対テンプレートを弱適応的後悔最小化器で与えることによって、どのように回避できるのかを示す。
上記の2つの前提が満たされていない場合に保証される、世界の最高の保証を証明します。
論文 参考訳(メタデータ) (2023-02-02T16:30:33Z) - Incentive-Aware Recommender Systems in Two-Sided Markets [49.692453629365204]
最適性能を達成しつつエージェントのインセンティブと整合する新しいレコメンデータシステムを提案する。
我々のフレームワークは、このインセンティブを意識したシステムを、両側市場におけるマルチエージェントバンディット問題としてモデル化する。
どちらのアルゴリズムも、エージェントが過剰な露出から保護する、ポストフェアネス基準を満たす。
論文 参考訳(メタデータ) (2022-11-23T22:20:12Z) - Interactive Recommendations for Optimal Allocations in Markets with
Constraints [12.580391999838128]
本稿では,システムプロバイダがユーザへのレコメンデーションの質を高めるためのインタラクティブなフレームワークを提案する。
我々は,協調フィルタリング,帯域幅,最適資源配分といった手法を用いた統合的アプローチを採用する。
人工マトリックスと実世界のデータに関する実証研究は,本手法の有効性と性能を実証している。
論文 参考訳(メタデータ) (2022-07-08T22:16:51Z) - Online Allocation with Two-sided Resource Constraints [44.5635910908944]
我々は,要求が順次到着する,リソース制約の低いオンラインアロケーション問題を考える。
提案手法では, リクエスト全体を知るオフライン問題に対して, 1-O (fracepsilonalpha-epsilon)$-competitive ratioを求めるアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-12-28T02:21:06Z) - The Best of Many Worlds: Dual Mirror Descent for Online Allocation
Problems [7.433931244705934]
本稿では,意思決定者に対して未知の入力モデルを用いて,各要求に対する報酬とリソース消費を生成するデータ駆動型設定について考察する。
様々な入力モデルにおいて,どの入力に直面するかを知ることなく,優れた性能が得られるアルゴリズムの一般クラスを設計する。
我々のアルゴリズムはラグランジアン双対空間で動作し、オンラインミラー降下を用いて更新される各リソースに対して双対乗算器を保持する。
論文 参考訳(メタデータ) (2020-11-18T18:39:17Z) - Coordinated Online Learning for Multi-Agent Systems with Coupled
Constraints and Perturbed Utility Observations [91.02019381927236]
本研究では, 資源制約を満たすため, エージェントを安定な集団状態へ誘導する新しい手法を提案する。
提案手法は,ゲームラグランジアンの拡張によるリソース負荷に基づく分散リソース価格設定手法である。
論文 参考訳(メタデータ) (2020-10-21T10:11:17Z) - Resource Allocation via Model-Free Deep Learning in Free Space Optical
Communications [119.81868223344173]
本稿では,自由空間光学(FSO)通信におけるチャネルフェージング効果の緩和のための資源配分の一般的な問題について検討する。
本フレームワークでは,FSO資源割り当て問題を解決する2つのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-07-27T17:38:51Z) - Hierarchical Adaptive Contextual Bandits for Resource Constraint based
Recommendation [49.69139684065241]
コンテキスト多重武装バンディット(MAB)は、様々な問題において最先端のパフォーマンスを達成する。
本稿では,階層型適応型文脈帯域幅法(HATCH)を提案する。
論文 参考訳(メタデータ) (2020-04-02T17:04:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。