論文の概要: A Review of the Role of Causality in Developing Trustworthy AI Systems
- arxiv url: http://arxiv.org/abs/2302.06975v1
- Date: Tue, 14 Feb 2023 11:08:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-15 15:34:59.589551
- Title: A Review of the Role of Causality in Developing Trustworthy AI Systems
- Title(参考訳): 信頼できるaiシステムの開発における因果関係の役割
- Authors: Niloy Ganguly, Dren Fazlija, Maryam Badar, Marco Fisichella, Sandipan
Sikdar, Johanna Schrader, Jonas Wallat, Koustav Rudra, Manolis Koubarakis,
Gourab K. Patro, Wadhah Zai El Amri, Wolfgang Nejdl
- Abstract要約: 最先端のAIモデルは、現実世界の人間の理解を支配する因果関係の理解がほとんどない。
近年,AIモデルの信頼性を向上するための強力なツールとして因果モデリングや推論手法が登場している。
- 参考スコア(独自算出の注目度): 16.267806768096026
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: State-of-the-art AI models largely lack an understanding of the cause-effect
relationship that governs human understanding of the real world. Consequently,
these models do not generalize to unseen data, often produce unfair results,
and are difficult to interpret. This has led to efforts to improve the
trustworthiness aspects of AI models. Recently, causal modeling and inference
methods have emerged as powerful tools. This review aims to provide the reader
with an overview of causal methods that have been developed to improve the
trustworthiness of AI models. We hope that our contribution will motivate
future research on causality-based solutions for trustworthy AI.
- Abstract(参考訳): 最先端のAIモデルは、現実世界の人間の理解を支配する因果関係の理解がほとんどない。
したがって、これらのモデルは、見当たらないデータに一般化せず、しばしば不公平な結果をもたらし、解釈が難しい。
これにより、AIモデルの信頼性面の改善が図られている。
近年,因果モデリングや推論手法が強力なツールとして登場している。
このレビューは、AIモデルの信頼性を改善するために開発された因果的手法の概要を読者に提供することを目的としている。
当社の貢献が、信頼できるaiのための因果関係に基づくソリューションに関する今後の研究の動機となることを願っています。
関連論文リスト
- Learning to Generate and Evaluate Fact-checking Explanations with Transformers [10.970249299147866]
XAI(Explainable Artificial Antelligence)の研究
我々は,人間のアクセス可能な説明を生成することによって,意思決定を文脈化し,正当化するトランスフォーマーベースの事実チェックモデルを開発した。
我々は人工知能(AI)による説明と人間の判断を一致させる必要性を強調した。
論文 参考訳(メタデータ) (2024-10-21T06:22:51Z) - To Err Is AI! Debugging as an Intervention to Facilitate Appropriate Reliance on AI Systems [11.690126756498223]
最適な人間とAIのコラボレーションのためのビジョンは、人間のAIシステムへの「適切な依存」を必要とする。
実際には、アウト・オブ・ディストリビューションデータにおける機械学習モデルの性能格差は、データセット固有のパフォーマンスフィードバックを信頼できないものにしている。
論文 参考訳(メタデータ) (2024-09-22T09:43:27Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
エージェントAI - 大きな基盤モデルをエージェントアクションに統合する具体的システム。
本稿では,エージェント・ファウンデーション・モデル(エージェント・ファウンデーション・モデル)を提案する。
論文 参考訳(メタデータ) (2024-02-28T16:09:56Z) - On the Challenges and Opportunities in Generative AI [135.2754367149689]
現在の大規模生成AIモデルは、ドメイン間で広く採用されるのを妨げるいくつかの基本的な問題に十分対応していない、と我々は主張する。
本研究は、現代の生成型AIパラダイムにおける重要な未解決課題を特定し、その能力、汎用性、信頼性をさらに向上するために取り組まなければならない。
論文 参考訳(メタデータ) (2024-02-28T15:19:33Z) - The Essential Role of Causality in Foundation World Models for Embodied AI [102.75402420915965]
身体的なAIエージェントは、さまざまな現実世界環境で新しいタスクを実行する能力を必要とします。
現在の基礎モデルは物理的相互作用を正確にモデル化することができないため、Embodied AIには不十分である。
因果関係の研究は、検証世界モデルの構築に寄与する。
論文 参考訳(メタデータ) (2024-02-06T17:15:33Z) - Explain To Decide: A Human-Centric Review on the Role of Explainable
Artificial Intelligence in AI-assisted Decision Making [1.0878040851638]
機械学習モデルはエラーを起こしやすく、自律的に使用することはできない。
説明可能な人工知能(XAI)は、エンドユーザーによるモデルの理解を支援する。
本稿では,XAIの人間-AI意思決定への影響に関する最近の実証的研究について報告する。
論文 参考訳(メタデータ) (2023-12-11T22:35:21Z) - Exploration with Principles for Diverse AI Supervision [88.61687950039662]
次世代の予測を用いた大規模トランスフォーマーのトレーニングは、AIの画期的な進歩を生み出した。
この生成AIアプローチは印象的な結果をもたらしたが、人間の監督に大きく依存している。
この人間の監視への強い依存は、AIイノベーションの進歩に重大なハードルをもたらす。
本稿では,高品質なトレーニングデータを自律的に生成することを目的とした,探索型AI(EAI)という新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-10-13T07:03:39Z) - On the meaning of uncertainty for ethical AI: philosophy and practice [10.591284030838146]
これは、数学的推論に倫理的考察をもたらす重要な方法であると主張する。
我々は、2021年12月のOmicron型COVID-19の拡散について、英国政府に助言するために使用される競合モデルの文脈内でこれらのアイデアを実証する。
論文 参考訳(メタデータ) (2023-09-11T15:13:36Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
AIフェアネスを詳しく見て、AIフェアネスの欠如が、時間の経過とともにバイアスの深化につながるかを分析します。
偏りのあるモデルが特定のグループに対してよりネガティブな現実的な結果をもたらすかについて議論する。
問題が続くと、他のリスクとの相互作用によって強化され、社会不安という形で社会に深刻な影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2023-04-16T11:22:59Z) - Never trust, always verify : a roadmap for Trustworthy AI? [12.031113181911627]
我々はAIベースのシステムのコンテキストにおける信頼を検証し、AIシステムが信頼に値するものとなることの意味を理解する。
我々は、AIに対する信頼(resp. zero-trust)モデルを提案し、AIシステムの信頼性を保証するために満足すべき特性のセットを提案する。
論文 参考訳(メタデータ) (2022-06-23T21:13:10Z) - Effect of Confidence and Explanation on Accuracy and Trust Calibration
in AI-Assisted Decision Making [53.62514158534574]
ケース固有のモデル情報を明らかにする特徴が、信頼度を調整し、人間とAIのジョイントパフォーマンスを向上させることができるかどうかを検討する。
信頼スコアは、AIモデルに対する人々の信頼を校正するのに役立ちますが、信頼の校正だけでは、AI支援による意思決定を改善するには不十分です。
論文 参考訳(メタデータ) (2020-01-07T15:33:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。