Streaking single-electron ionization in open-shell molecules driven by
X-ray pulses
- URL: http://arxiv.org/abs/2302.07095v2
- Date: Mon, 3 Jul 2023 09:11:40 GMT
- Title: Streaking single-electron ionization in open-shell molecules driven by
X-ray pulses
- Authors: M. E. Mountney, T. C. Driver, A. Marinelli, M. F. Kling, J. P. Cryan,
A. Emmanouilidou
- Abstract summary: We obtain continuum molecular wavefunctions for open-shell molecules in the Hartree-Fock framework.
We control or streak the electron dynamics using a circularly polarized infrared (IR) pulse.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We obtain continuum molecular wavefunctions for open-shell molecules in the
Hartree-Fock framework. We do so while accounting for the singlet or triplet
total spin symmetry of the molecular ion, that is, of the open-shell orbital
and the initial orbital where the electron ionizes from. Using these continuum
wavefunctions, we obtain the dipole matrix elements for a core electron that
ionizes due to single-photon absorption by a linearly polarized X-ray pulse.
After ionization from the X-ray pulse, we control or streak the electron
dynamics using a circularly polarized infrared (IR) pulse. For a high intensity
IR pulse and photon energies of the X-ray pulse close to the ionization
threshold of the $1{\sigma}$ or $2{\sigma}$ orbitals, we achieve control of the
angle of escape of the ionizing electron by varying the phase delay between the
X-ray and IR pulses. For a low intensity IR pulse, we obtain final electron
momenta distributions on the plane of the IR pulse and we find that many
features of these distributions correspond to the angular patterns of electron
escape solely due to the X-ray pulse.
Related papers
- Acceleration and twisting of neutral atoms by strong elliptically polarized short-wavelength laser pulses [0.0]
We have investigated non-dipole effects in the interaction of a hydrogen atom with elliptically polarized laser pulses of intensity 10$14$ W/cm$2$ with about 8 fs duration.
The transition from linear to elliptical laser polarization leads to the twisting of the atom relative to the axis directed along the pulse propagation.
arXiv Detail & Related papers (2024-08-16T09:11:34Z) - Dynamics of Relativistic Vortex Electrons in External Laser Fields [2.4924880547843307]
vortex electron interactions with electromagnetic fields are essential for advancing particle acceleration techniques, scattering theory in background fields, and obtaining novel electron beams for material diagnostics.
We study the propagation of vortex electrons in linearly polarized (LP) and circularly polarized (CP) laser pulses, both separately and in their combined form in two-mode laser pulses.
Our findings demonstrate the versatile control over vortex electrons via laser pulses, with our formalism providing a reference for vortex scattering in laser backgrounds and inspiring the laser-controlled achievement of novel vortex modes as targeted diagnostic probes for specialized materials.
arXiv Detail & Related papers (2024-08-05T11:32:50Z) - Bipolar single-molecule electroluminescence and electrofluorochromism [50.591267188664666]
We investigate cationic and anionic fluorescence of individual zinc phthalocyanine (ZnPc) molecules adsorbed on ultrathin NaCl films on Ag (111) by using STML.
They depend on the tip-sample bias polarity and appear at threshold voltages that are correlated with the onset energies of particular molecular orbitals.
arXiv Detail & Related papers (2022-10-20T09:22:45Z) - Single quantum emitters with spin ground states based on Cl bound
excitons in ZnSe [55.41644538483948]
We show a new type of single photon emitter with potential electron spin qubit based on Cl impurities inSe.
Results suggest single Cl impurities are suitable as single photon source with potential photonic interface.
arXiv Detail & Related papers (2022-03-11T04:29:21Z) - Rapidly enhanced spin polarization injection in an optically pumped spin
ratchet [49.1301457567913]
We report on a strategy to boost the spin injection rate by exploiting electrons that can be rapidly polarized.
We demonstrate this in a model system of Nitrogen Vacancy center electrons injecting polarization into a bath of 13C nuclei in diamond.
Through a spin-ratchet polarization transfer mechanism, we show boosts in spin injection rates by over two orders of magnitude.
arXiv Detail & Related papers (2021-12-14T08:23:10Z) - Continuum-electron interferometry for enhancement of photoelectron
circular dichroism and measurement of bound, free, and mixed contributions to
chiral response [39.58317527488534]
We develop photoelectron interferometry based on laser-assisted extreme ultraviolet ionization for flexible and robust control of photoelectron circular dichroism in randomly oriented chiral molecules.
A comb of XUV photons ionizes a sample of chiral molecules in the presence of a time-delayed infrared or visible laser pulse promoting interferences between components of the XUV-ionized photoelectron wave packet.
arXiv Detail & Related papers (2021-04-15T15:20:57Z) - Infrared single-cycle pulse induced high-energy plateaus in high-order
harmonic spectroscopy [0.0]
We investigate the role of infrared (IR) single cycle pulses in controlling high-order harmonic generation.
Our findings open up new perspectives for time-resolved electron diffraction using an IR single-cycle field-assisted high-harmonic spectroscopy.
arXiv Detail & Related papers (2020-11-27T21:28:46Z) - Photoionization of aligned excited states in neon by attosecond laser
pulses [0.0]
We numerically describe the ionization process induced by linearly and circularly polarized XUV attosecond laser pulses on an aligned target.
We find that correlation-assisted ionization channels can dominate over channels without correlation.
arXiv Detail & Related papers (2020-11-11T09:36:09Z) - Effect of phonons on the electron spin resonance absorption spectrum [62.997667081978825]
We model the effect of phonons and temperature on the electron spin resonance (ESR) signal in magnetically active systems.
We find that the suppression of ESR signals is due to phonon broadening but not based on the common assumption of orbital quenching.
arXiv Detail & Related papers (2020-04-22T01:13:07Z) - Resonant high-energy bremsstrahlung of ultrarelativistic electrons in
the field of a nucleus and a pulsed light wave [68.8204255655161]
Research investigates the resonant high-energy spontaneous bremsstrahlung of ultrarelativistic electrons with considerable energies in the field of a nucleus and a quasimonochromatic laser wave.
arXiv Detail & Related papers (2020-04-05T16:27:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.