Photoionization of aligned excited states in neon by attosecond laser
pulses
- URL: http://arxiv.org/abs/2011.05659v2
- Date: Thu, 10 Dec 2020 10:20:48 GMT
- Title: Photoionization of aligned excited states in neon by attosecond laser
pulses
- Authors: Juan J. Omiste and Lars Bojer Madsen
- Abstract summary: We numerically describe the ionization process induced by linearly and circularly polarized XUV attosecond laser pulses on an aligned target.
We find that correlation-assisted ionization channels can dominate over channels without correlation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We describe numerically the ionization process induced by linearly and
circularly polarized XUV attosecond laser pulses on an aligned atomic target,
specifically, the excited state
Ne$^*(1s^22s^22p^5[{}^2\text{P}^\text{o}_{1/2}]3s[^1\text{P}^o])$. We compute
the excited atomic state by applying the time-dependent restricted-active-space
self-consistent field (TD-RASSCF) method to fully account for the electronic
correlation. We find that correlation-assisted ionization channels can dominate
over channels accessible without correlation. We also observe that the rotation
of the photoelectron momentum distribution by circularly polarized laser pulses
compared to the case of linear polarization can be explained in terms of
differences in accessible ionization channels. This study shows that it is
essential to include electron correlation effects to obtain an accurate
description of the photoelectron emission dynamics from aligned excited states.
Related papers
- Exploring single-photon recoil on free electrons [36.136619420474766]
We present experimental investigations of energy-momentum conservation and the corresponding dispersion relation on the single particle level, achieved through coincidence detection of electron-photon pairs.
This not only enables unprecedented clarity in detecting weak signals otherwise obscured by non-radiative processes but also provides a new experimental pathway to explore entanglement within electron-photon pairs.
arXiv Detail & Related papers (2024-09-18T16:45:17Z) - Acceleration and twisting of neutral atoms by strong elliptically polarized short-wavelength laser pulses [0.0]
We have investigated non-dipole effects in the interaction of a hydrogen atom with elliptically polarized laser pulses of intensity 10$14$ W/cm$2$ with about 8 fs duration.
The transition from linear to elliptical laser polarization leads to the twisting of the atom relative to the axis directed along the pulse propagation.
arXiv Detail & Related papers (2024-08-16T09:11:34Z) - Streaking single-electron ionization in open-shell molecules driven by
X-ray pulses [0.0]
We obtain continuum molecular wavefunctions for open-shell molecules in the Hartree-Fock framework.
We control or streak the electron dynamics using a circularly polarized infrared (IR) pulse.
arXiv Detail & Related papers (2023-02-14T14:48:55Z) - Single quantum emitters with spin ground states based on Cl bound
excitons in ZnSe [55.41644538483948]
We show a new type of single photon emitter with potential electron spin qubit based on Cl impurities inSe.
Results suggest single Cl impurities are suitable as single photon source with potential photonic interface.
arXiv Detail & Related papers (2022-03-11T04:29:21Z) - Rapidly enhanced spin polarization injection in an optically pumped spin
ratchet [49.1301457567913]
We report on a strategy to boost the spin injection rate by exploiting electrons that can be rapidly polarized.
We demonstrate this in a model system of Nitrogen Vacancy center electrons injecting polarization into a bath of 13C nuclei in diamond.
Through a spin-ratchet polarization transfer mechanism, we show boosts in spin injection rates by over two orders of magnitude.
arXiv Detail & Related papers (2021-12-14T08:23:10Z) - Continuum-electron interferometry for enhancement of photoelectron
circular dichroism and measurement of bound, free, and mixed contributions to
chiral response [39.58317527488534]
We develop photoelectron interferometry based on laser-assisted extreme ultraviolet ionization for flexible and robust control of photoelectron circular dichroism in randomly oriented chiral molecules.
A comb of XUV photons ionizes a sample of chiral molecules in the presence of a time-delayed infrared or visible laser pulse promoting interferences between components of the XUV-ionized photoelectron wave packet.
arXiv Detail & Related papers (2021-04-15T15:20:57Z) - Electrons in intense laser fields with local phase, polarization, and
skyrmionic textures [0.0]
We derive expressions for the wave function of an unbound electron subject to a structured, intense laser field.
It is also shown that photoelectrons can be accelerated or momentum when moving through a focused, intense laser field.
arXiv Detail & Related papers (2020-11-25T11:52:44Z) - Optical coherence transfer mediated by free electrons [0.0]
We consider the quantum-optical correlations of CL from electrons that are previously shaped by a laser field.
The main prediction here is the presence of phase correlations between the emitted CL field and the electron-modulating laser.
Since electron beams can be focused to below one Angstrom, their ability to transfer optical coherence could enable ultra precise excitation, manipulation, and spectroscopy of nanoscale quantum systems.
arXiv Detail & Related papers (2020-10-26T22:13:00Z) - Manipulating Twisted Electrons in Strong-Field Ionization [0.0]
orbital angular momentum (OAM) of photoelectrons freed in strongfield ionization.
We use these twisted' electrons to provide an alternative interpretation on existing experimental work of vortex interferences caused by strong field ionization.
A discussion is included on measuring the OAM in strong field ionization directly or by employing specific laser pulse schemes as well as utilizing the OAM in time-resolved imaging of photo-induced dynamics.
arXiv Detail & Related papers (2020-10-16T12:45:38Z) - Demonstration of dipolar-induced enhancement of parametric effects in
polariton waveguides [40.96261204117952]
Exciton-polaritons are hybrid light-matter excitations arising from the non-fluidative coupling of a photonic mode and an excitonic resonance.
We show that dipolar interactions can be used to enhance parametric effects such as self-phase modulation in waveguide polaritons.
arXiv Detail & Related papers (2020-05-22T20:45:31Z) - Resonant high-energy bremsstrahlung of ultrarelativistic electrons in
the field of a nucleus and a pulsed light wave [68.8204255655161]
Research investigates the resonant high-energy spontaneous bremsstrahlung of ultrarelativistic electrons with considerable energies in the field of a nucleus and a quasimonochromatic laser wave.
arXiv Detail & Related papers (2020-04-05T16:27:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.