論文の概要: Bounding Training Data Reconstruction in DP-SGD
- arxiv url: http://arxiv.org/abs/2302.07225v2
- Date: Sun, 23 Apr 2023 20:29:49 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-25 21:09:27.772741
- Title: Bounding Training Data Reconstruction in DP-SGD
- Title(参考訳): DP-SGDにおける境界学習データ再構成
- Authors: Jamie Hayes, Saeed Mahloujifar, Borja Balle
- Abstract要約: 異なるプライベートトレーニングは、通常、メンバーシップ推論攻撃に対する保証として解釈される保護を提供する。
プロキシによって、この保証は、完全なトレーニング例を抽出しようとする再構築攻撃のような他の脅威にまで拡張される。
最近の研究は、もしメンバーシップ攻撃から保護する必要がなく、訓練データ再構成から保護することだけを望むなら、プライベートモデルの実用性を改善することができるという証拠を提供している。
- 参考スコア(独自算出の注目度): 33.387876460748394
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Differentially private training offers a protection which is usually
interpreted as a guarantee against membership inference attacks. By proxy, this
guarantee extends to other threats like reconstruction attacks attempting to
extract complete training examples. Recent works provide evidence that if one
does not need to protect against membership attacks but instead only wants to
protect against training data reconstruction, then utility of private models
can be improved because less noise is required to protect against these more
ambitious attacks. We investigate this further in the context of DP-SGD, a
standard algorithm for private deep learning, and provide an upper bound on the
success of any reconstruction attack against DP-SGD together with an attack
that empirically matches the predictions of our bound. Together, these two
results open the door to fine-grained investigations on how to set the privacy
parameters of DP-SGD in practice to protect against reconstruction attacks.
Finally, we use our methods to demonstrate that different settings of the
DP-SGD parameters leading to the same DP guarantees can result in significantly
different success rates for reconstruction, indicating that the DP guarantee
alone might not be a good proxy for controlling the protection against
reconstruction attacks.
- Abstract(参考訳): 異なるプライベートトレーニングは、通常はメンバーシップ推論攻撃に対する保証として解釈される保護を提供する。
この保証はプロキシによって、完全なトレーニング例を抽出しようとするレコンストラクション攻撃など、他の脅威にも拡張される。
最近の研究は、もしメンバーシップ攻撃から保護する必要がなく、訓練データ再構成から保護したいというなら、これらのより野心的な攻撃から保護するためにノイズが少ないため、プライベートモデルの有用性を改善することができるという証拠を提供している。
さらに,私的深層学習の標準アルゴリズムであるDP-SGDの文脈でこれを検証し,DP-SGDに対する再構築攻撃の成功と,我々の限界の予測に実証的に一致する攻撃に上限を与える。
これら2つの結果は,dp-sgdのプライバシパラメータの設定方法について,レコンストラクション攻撃から保護するための詳細な調査の扉を開くものだ。
最後に, DP-SGDパラメータの異なる設定を同一のDP保証に導いた場合, 復元における成功率が著しく異なることを示すために, DP保証だけでは再建攻撃に対する保護を制御できない可能性が示唆された。
関連論文リスト
- Bayes' capacity as a measure for reconstruction attacks in federated learning [10.466570297146953]
定量的情報フローの情報理論フレームワークを用いて,再構成脅威モデルを定式化する。
我々は,シブソンの次数無限性の相互情報に関連するベイズの能力が,DP-SGDアルゴリズムの逆数へのリークの密接な上限を表していることを示す。
論文 参考訳(メタデータ) (2024-06-19T13:58:42Z) - Visual Privacy Auditing with Diffusion Models [52.866433097406656]
本稿では,拡散モデル(DM)に基づくリコンストラクション攻撃を提案する。
本研究では,(1)実世界のデータ漏洩が再建の成功に大きく影響すること,(2)現在のリビルド境界がデータ先行によるリスクをうまくモデル化していないこと,(3)DMは,プライバシー漏洩を可視化するための効果的な監査ツールとして機能すること,を示す。
論文 参考訳(メタデータ) (2024-03-12T12:18:55Z) - BadCLIP: Dual-Embedding Guided Backdoor Attack on Multimodal Contrastive
Learning [85.2564206440109]
本報告では,防衛後においてもバックドア攻撃が有効であり続けるという現実的なシナリオにおける脅威を明らかにする。
バックドア検出や細調整防御のモデル化に抵抗性のあるemphtoolnsアタックを導入する。
論文 参考訳(メタデータ) (2023-11-20T02:21:49Z) - Does Differential Privacy Prevent Backdoor Attacks in Practice? [8.951356689083166]
機械学習モデルにおけるバックドア攻撃防止における差分プライバシー手法の有効性について検討する。
本稿では,DP-SGD と PATE の高速かつ高精度な代替手段として Label-DP を提案する。
論文 参考訳(メタデータ) (2023-11-10T18:32:08Z) - Defending against Reconstruction Attacks with R\'enyi Differential
Privacy [72.1188520352079]
レコンストラクション攻撃により、敵は訓練されたモデルのみにアクセスすることで、トレーニングセットのデータサンプルを再生することができる。
差別化プライバシはこのような攻撃に対する既知の解決策であるが、比較的大きなプライバシ予算で使用されることが多い。
また、同機構により、従来の文献よりも優れた復元攻撃に対するプライバシー保証を導出できることを示す。
論文 参考訳(メタデータ) (2022-02-15T18:09:30Z) - Bounding Training Data Reconstruction in Private (Deep) Learning [40.86813581191581]
差分プライバシーは、MLにおけるデータ漏洩を防ぐデファクト手法として広く受け入れられている。
既存のDPのセマンティック保証は、メンバーシップ推論に重点を置いている。
我々は、Renyi差分プライバシーとFisher情報漏洩という2つの異なるプライバシ会計手法が、データ再構成攻撃に対して強力なセマンティック保護を提供することを示した。
論文 参考訳(メタデータ) (2022-01-28T19:24:30Z) - DP-InstaHide: Provably Defusing Poisoning and Backdoor Attacks with
Differentially Private Data Augmentations [54.960853673256]
混合や無作為な付加ノイズなどの強いデータ拡張は、わずかな精度のトレードオフに耐えながら、毒の攻撃を無効にする。
DP-InstaHideの厳密な分析によると、ミキサップは確かにプライバシー上の利点があり、kウェイミキサップによるトレーニングは、単純DPメカニズムよりも少なくともk倍強いDP保証が得られる。
論文 参考訳(メタデータ) (2021-03-02T23:07:31Z) - Guided Adversarial Attack for Evaluating and Enhancing Adversarial
Defenses [59.58128343334556]
我々は、より適切な勾配方向を見つけ、攻撃効果を高め、より効率的な対人訓練をもたらす標準損失に緩和項を導入する。
本稿では, クリーン画像の関数マッピングを用いて, 敵生成を誘導するGAMA ( Guided Adversarial Margin Attack) を提案する。
また,一段防衛における最先端性能を実現するためのGAT ( Guided Adversarial Training) を提案する。
論文 参考訳(メタデータ) (2020-11-30T16:39:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。