論文の概要: Secure Aggregation is Not Private Against Membership Inference Attacks
- arxiv url: http://arxiv.org/abs/2403.17775v3
- Date: Mon, 15 Jul 2024 14:29:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-17 01:15:36.281033
- Title: Secure Aggregation is Not Private Against Membership Inference Attacks
- Title(参考訳): セキュアなアグリゲーションは、メンバーシップ推論攻撃に対してプライベートではない
- Authors: Khac-Hoang Ngo, Johan Östman, Giuseppe Durisi, Alexandre Graell i Amat,
- Abstract要約: フェデレーション学習におけるSecAggのプライバシーへの影響について検討する。
SecAggは、単一のトレーニングラウンドであっても、メンバシップ推論攻撃に対して弱いプライバシを提供します。
以上の結果から,ノイズ注入などの付加的なプライバシー強化機構の必要性が浮き彫りになった。
- 参考スコア(独自算出の注目度): 66.59892736942953
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Secure aggregation (SecAgg) is a commonly-used privacy-enhancing mechanism in federated learning, affording the server access only to the aggregate of model updates while safeguarding the confidentiality of individual updates. Despite widespread claims regarding SecAgg's privacy-preserving capabilities, a formal analysis of its privacy is lacking, making such presumptions unjustified. In this paper, we delve into the privacy implications of SecAgg by treating it as a local differential privacy (LDP) mechanism for each local update. We design a simple attack wherein an adversarial server seeks to discern which update vector a client submitted, out of two possible ones, in a single training round of federated learning under SecAgg. By conducting privacy auditing, we assess the success probability of this attack and quantify the LDP guarantees provided by SecAgg. Our numerical results unveil that, contrary to prevailing claims, SecAgg offers weak privacy against membership inference attacks even in a single training round. Indeed, it is difficult to hide a local update by adding other independent local updates when the updates are of high dimension. Our findings underscore the imperative for additional privacy-enhancing mechanisms, such as noise injection, in federated learning.
- Abstract(参考訳): セキュアアグリゲーション(SecAgg)は、フェデレーション学習において一般的に使用されるプライバシ強化メカニズムであり、個々の更新の機密性を保護しながら、モデルの更新の集約にのみアクセスすることができる。
SecAggのプライバシ保護機能に関する広範な主張にもかかわらず、そのプライバシに関する公式な分析は欠如しており、そのような推測は正当化されていない。
本稿では、SecAggのプライバシーへの影響を各ローカル更新のローカル差分プライバシ(LDP)メカニズムとして扱うことにより調べる。
本研究では,SecAggのもとでの1回の学習ラウンドにおいて,クライアントが提出したベクタを2つの可能なベクタから識別する単純な攻撃を設計する。
プライバシ監査を行うことで、この攻撃の成功確率を評価し、SecAggが提供するLCP保証を定量化する。
我々の数値結果は、一般的な主張とは対照的に、SecAggは1回のトレーニングラウンドでもメンバーシップ推論攻撃に対して弱いプライバシーを提供します。
実際、更新が高次元である場合、他の独立したローカルアップデートを追加することで、ローカルアップデートを隠すのは難しい。
本研究は,フェデレート学習において,ノイズ注入などの付加的なプライバシ向上機構の必要性を浮き彫りにした。
関連論文リスト
- Byzantine-Robust Federated Learning with Variance Reduction and
Differential Privacy [6.343100139647636]
フェデレートラーニング(FL)は、モデルトレーニング中にデータのプライバシを保存するように設計されている。
FLはプライバシー攻撃やビザンツ攻撃に弱い。
本稿では,厳格なプライバシを保証するとともに,ビザンチン攻撃に対するシステムの堅牢性を同時に向上する新しいFLスキームを提案する。
論文 参考訳(メタデータ) (2023-09-07T01:39:02Z) - Client-specific Property Inference against Secure Aggregation in
Federated Learning [52.8564467292226]
フェデレートラーニングは、さまざまな参加者の間で共通のモデルを協調的に訓練するための、広く使われているパラダイムとなっている。
多くの攻撃は、メンバーシップ、資産、または参加者データの完全な再構築のような機密情報を推測することは依然として可能であることを示した。
単純な線形モデルでは、集約されたモデル更新からクライアント固有のプロパティを効果的にキャプチャできることが示される。
論文 参考訳(メタデータ) (2023-03-07T14:11:01Z) - Breaking the Communication-Privacy-Accuracy Tradeoff with
$f$-Differential Privacy [51.11280118806893]
サーバが複数のユーザの協調的なデータ分析を,プライバシの懸念と限られた通信能力で調整する,フェデレートされたデータ分析問題を考える。
有限出力空間を有する離散値機構の局所的差分プライバシー保証を$f$-differential privacy (DP) レンズを用いて検討する。
より具体的には、様々な離散的評価機構の厳密な$f$-DP保証を導出することにより、既存の文献を前進させる。
論文 参考訳(メタデータ) (2023-02-19T16:58:53Z) - Privacy-Preserving Distributed Expectation Maximization for Gaussian
Mixture Model using Subspace Perturbation [4.2698418800007865]
フェデレーション学習は、プライベートデータの送信を許可せず、中間更新のみを許可するため、プライバシー上の懸念によって動機付けられている。
我々は、各ステップの更新を安全に計算できる、完全に分散化されたプライバシ保存ソリューションを提案する。
数値検証により,提案手法は,精度とプライバシの両面において,既存手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2022-09-16T09:58:03Z) - A New Implementation of Federated Learning for Privacy and Security
Enhancement [27.612480082254486]
フェデレーテッド・ラーニング(FL)は、新しい機械学習・セッティングとして登場した。
ローカルデータを共有する必要はなく、プライバシを十分に保護することができる。
本稿では,ビザンチン攻撃に対するモデル更新に基づくフェデレーション平均化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-08-03T03:13:19Z) - Is Vertical Logistic Regression Privacy-Preserving? A Comprehensive
Privacy Analysis and Beyond [57.10914865054868]
垂直ロジスティック回帰(VLR)をミニバッチ降下勾配で訓練した。
我々は、オープンソースのフェデレーション学習フレームワークのクラスにおいて、VLRの包括的で厳密なプライバシー分析を提供する。
論文 参考訳(メタデータ) (2022-07-19T05:47:30Z) - Defending against Reconstruction Attacks with R\'enyi Differential
Privacy [72.1188520352079]
レコンストラクション攻撃により、敵は訓練されたモデルのみにアクセスすることで、トレーニングセットのデータサンプルを再生することができる。
差別化プライバシはこのような攻撃に対する既知の解決策であるが、比較的大きなプライバシ予算で使用されることが多い。
また、同機構により、従来の文献よりも優れた復元攻撃に対するプライバシー保証を導出できることを示す。
論文 参考訳(メタデータ) (2022-02-15T18:09:30Z) - Secure and Privacy-Preserving Federated Learning via Co-Utility [7.428782604099875]
私たちは、参加する仲間にプライバシを提供し、ビザンチンや毒殺攻撃に対するセキュリティを提供する、連合学習フレームワークを構築しています。
更新アグリゲーションによるプライバシ保護とは異なり、我々のアプローチはモデル更新の価値を保ち、従って通常のフェデレーション学習の精度を保っている。
論文 参考訳(メタデータ) (2021-08-04T08:58:24Z) - Federated Learning in Adversarial Settings [0.8701566919381224]
フェデレートされた学習スキームは、堅牢性、プライバシ、帯域幅効率、モデルの精度の異なるトレードオフを提供します。
この拡張は、厳格なプライバシー要件があっても、プライベートではないがロバストなスキームと同じくらい効率的に機能することを示す。
これは差別化プライバシとロバストネスの基本的なトレードオフの可能性を示している。
論文 参考訳(メタデータ) (2020-10-15T14:57:02Z) - Private Reinforcement Learning with PAC and Regret Guarantees [69.4202374491817]
エピソード強化学習(RL)のためのプライバシー保護探索ポリシーを設計する。
まず、共同微分プライバシー(JDP)の概念を用いた有意義なプライバシー定式化を提供する。
そこで我々は,強いPACと後悔境界を同時に達成し,JDP保証を享受する,プライベートな楽観主義に基づく学習アルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-09-18T20:18:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。