論文の概要: Semi-Supervised Deep Regression with Uncertainty Consistency and
Variational Model Ensembling via Bayesian Neural Networks
- arxiv url: http://arxiv.org/abs/2302.07579v1
- Date: Wed, 15 Feb 2023 10:40:51 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-16 15:26:39.571060
- Title: Semi-Supervised Deep Regression with Uncertainty Consistency and
Variational Model Ensembling via Bayesian Neural Networks
- Title(参考訳): ベイズニューラルネットワークによる不確実性と変分モデルによる半監督深部回帰
- Authors: Weihang Dai, Xiaomeng Li, Kwang-Ting Cheng
- Abstract要約: 我々は,半教師付き回帰,すなわち不確実連続変分モデル組立(UCVME)に対する新しいアプローチを提案する。
整合性損失は不確実性評価を著しく改善し,不整合回帰の下では,高品質な擬似ラベルをより重要視することができる。
実験の結果,本手法は様々なタスクにおける最先端の代替手段よりも優れており,フルラベルを用いた教師付き手法と競合する可能性が示唆された。
- 参考スコア(独自算出の注目度): 31.67508478764597
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep regression is an important problem with numerous applications. These
range from computer vision tasks such as age estimation from photographs, to
medical tasks such as ejection fraction estimation from echocardiograms for
disease tracking. Semi-supervised approaches for deep regression are notably
under-explored compared to classification and segmentation tasks, however.
Unlike classification tasks, which rely on thresholding functions for
generating class pseudo-labels, regression tasks use real number target
predictions directly as pseudo-labels, making them more sensitive to prediction
quality. In this work, we propose a novel approach to semi-supervised
regression, namely Uncertainty-Consistent Variational Model Ensembling (UCVME),
which improves training by generating high-quality pseudo-labels and
uncertainty estimates for heteroscedastic regression. Given that aleatoric
uncertainty is only dependent on input data by definition and should be equal
for the same inputs, we present a novel uncertainty consistency loss for
co-trained models. Our consistency loss significantly improves uncertainty
estimates and allows higher quality pseudo-labels to be assigned greater
importance under heteroscedastic regression. Furthermore, we introduce a novel
variational model ensembling approach to reduce prediction noise and generate
more robust pseudo-labels. We analytically show our method generates higher
quality targets for unlabeled data and further improves training. Experiments
show that our method outperforms state-of-the-art alternatives on different
tasks and can be competitive with supervised methods that use full labels. Our
code is available at https://github.com/xmed-lab/UCVME.
- Abstract(参考訳): 深い回帰は、多くのアプリケーションにおいて重要な問題である。
これらは、写真からの年齢推定などのコンピュータビジョンタスクから、疾患追跡のためのエコー心電図からの退院率推定のような医療タスクまで様々である。
しかし、深い回帰に対する半教師付きアプローチは、分類やセグメンテーションのタスクと比べて明らかに未探索である。
クラス擬似ラベルを生成するためのしきい値関数に依存する分類タスクとは異なり、回帰タスクは実数目標予測を直接擬似ラベルとして使用するため、予測品質に敏感である。
本研究では,半教師付き回帰,すなわち不確実性連続変分モデル(UCVME)に対して,高品質な擬似ラベルを生成してトレーニングを改善する手法を提案する。
アレオータの不確実性は、定義によって入力データにのみ依存し、同じ入力に対して等しくなければならないと仮定すると、共学習モデルに対する新しい不確実性一貫性損失を示す。
整合性損失は不確実性評価を著しく改善し,不整合回帰の下では,高品質な擬似ラベルをより重要視することができる。
さらに,予測ノイズを低減し,よりロバストな擬似ラベルを生成する新しい変分モデルセンシング手法を提案する。
本手法はラベルなしデータに対して高い品質のターゲットを生成し,さらにトレーニングを改善する。
実験により,本手法は様々なタスクにおける最先端の代替手段よりも優れており,フルラベルを用いた教師付き手法と競合することを示す。
私たちのコードはhttps://github.com/xmed-lab/ucvmeで利用可能です。
関連論文リスト
- Beyond the Norms: Detecting Prediction Errors in Regression Models [26.178065248948773]
本稿では,回帰アルゴリズムにおける信頼できない振る舞いを検出するという課題に取り組む。
回帰器の出力が特定の不一致(または誤り)を超えた場合、回帰における不確実性の概念を導入する。
複数の回帰タスクに対する誤り検出の実証的改善を示す。
論文 参考訳(メタデータ) (2024-06-11T05:51:44Z) - Variational Classification [51.2541371924591]
我々は,変分オートエンコーダの訓練に用いるエビデンスローバウンド(ELBO)に類似した,モデルの訓練を目的とした変分目的を導出する。
軟質マックス層への入力を潜伏変数のサンプルとして扱うことで, 抽象化された視点から, 潜在的な矛盾が明らかとなった。
我々は、標準ソフトマックス層に見られる暗黙の仮定の代わりに、選択された潜在分布を誘導する。
論文 参考訳(メタデータ) (2023-05-17T17:47:19Z) - How Reliable is Your Regression Model's Uncertainty Under Real-World
Distribution Shifts? [46.05502630457458]
本研究では,異なるタイプの分散シフトを伴う8つの画像ベース回帰データセットのベンチマークを提案する。
分散シフトがない場合、メソッドは十分に校正されているが、ベンチマークデータセットの多くに非常に自信が持たれていることが分かっています。
論文 参考訳(メタデータ) (2023-02-07T18:54:39Z) - Benchmarking common uncertainty estimation methods with
histopathological images under domain shift and label noise [62.997667081978825]
リスクの高い環境では、深層学習モデルは不確実性を判断し、誤分類の可能性がかなり高い場合に入力を拒否しなければなりません。
我々は,全スライド画像の分類において,最もよく使われている不確実性と頑健さの厳密な評価を行う。
我々は一般的に,手法のアンサンブルが,ドメインシフトやラベルノイズに対するロバスト性の向上とともに,より良い不確実性評価につながることを観察する。
論文 参考訳(メタデータ) (2023-01-03T11:34:36Z) - Semi-supervised Contrastive Outlier removal for Pseudo Expectation
Maximization (SCOPE) [2.33877878310217]
Pseudo expectation Maximization (SCOPE) のための半教師付きコントラスト外乱除去法を用いて, 共起誤差を抑制する新しい手法を提案する。
その結果,SCOPEはベースライン上での半教師付き分類精度を大幅に向上し,さらに整合正則化と組み合わせた場合,250と4000のラベル付きサンプルを用いた半教師付きCIFAR-10分類タスクにおいて最も高い精度が得られた。
論文 参考訳(メタデータ) (2022-06-28T19:32:50Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
実世界の機械学習デプロイメントは、ソース(トレーニング)とターゲット(テスト)ディストリビューションのミスマッチによって特徴づけられる。
本研究では,ラベル付きソースデータとラベルなしターゲットデータのみを用いて,対象領域の精度を予測する手法を検討する。
本稿では,モデルの信頼度をしきい値として学習し,精度をラベルなし例のごく一部として予測する実践的手法である平均閾値保持信頼度(ATC)を提案する。
論文 参考訳(メタデータ) (2022-01-11T23:01:12Z) - X-model: Improving Data Efficiency in Deep Learning with A Minimax Model [78.55482897452417]
ディープラーニングにおける分類と回帰設定の両面でのデータ効率の向上を目標とする。
両世界の力を生かすために,我々は新しいX-モデルを提案する。
X-モデルは、特徴抽出器とタスク固有のヘッドの間でミニマックスゲームを行う。
論文 参考訳(メタデータ) (2021-10-09T13:56:48Z) - Exploiting Sample Uncertainty for Domain Adaptive Person
Re-Identification [137.9939571408506]
各サンプルに割り当てられた擬似ラベルの信頼性を推定・活用し,ノイズラベルの影響を緩和する。
不確実性に基づく最適化は大幅な改善をもたらし、ベンチマークデータセットにおける最先端のパフォーマンスを達成します。
論文 参考訳(メタデータ) (2020-12-16T04:09:04Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - Mitigating Class Boundary Label Uncertainty to Reduce Both Model Bias
and Variance [4.563176550691304]
トレーニングデータラベルの不正確性と不確実性に対処する新しい手法について検討する。
本手法は,トレーニングセットのポイントワイドラベルの不確かさを推定することにより,バイアスと分散の両面を低減できる。
論文 参考訳(メタデータ) (2020-02-23T18:24:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。