論文の概要: A Federated Learning Benchmark for Drug-Target Interaction
- arxiv url: http://arxiv.org/abs/2302.07684v1
- Date: Wed, 15 Feb 2023 14:21:31 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-16 14:47:09.681392
- Title: A Federated Learning Benchmark for Drug-Target Interaction
- Title(参考訳): 薬物・標的相互作用のフェデレーション学習ベンチマーク
- Authors: Filip Svoboda, Gianluca Mittone, Nicholas D. Lane, Pietro Lio
- Abstract要約: 本研究は,薬物-標的相互作用(DTI)領域におけるフェデレートラーニングの適用について提案する。
最高の非プライバシ保護代替手段と比較して、最大15%パフォーマンスが向上する。
他の領域とは異なり、DTIデータセットの非IIDデータ分布はFL性能を損なわないことを示す。
- 参考スコア(独自算出の注目度): 8.537997283673997
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Aggregating pharmaceutical data in the drug-target interaction (DTI) domain
has the potential to deliver life-saving breakthroughs. It is, however,
notoriously difficult due to regulatory constraints and commercial interests.
This work proposes the application of federated learning, which we argue to be
reconcilable with the industry's constraints, as it does not require sharing of
any information that would reveal the entities' data or any other high-level
summary of it. When used on a representative GraphDTA model and the KIBA
dataset it achieves up to 15% improved performance relative to the best
available non-privacy preserving alternative. Our extensive battery of
experiments shows that, unlike in other domains, the non-IID data distribution
in the DTI datasets does not deteriorate FL performance. Additionally, we
identify a material trade-off between the benefits of adding new data, and the
cost of adding more clients.
- Abstract(参考訳): 薬物・標的相互作用(DTI)ドメインにおける医薬品データの集約は、生命維持のブレークスルーをもたらす可能性がある。
しかし、規制の制約と商業上の利益のために、それは非常に難しい。
本研究は,企業データやその他の高レベルの概要を明らかにする情報を共有する必要がなくなるため,産業の制約と調和できると考えるフェデレートラーニングの適用を提案する。
代表的なGraphDTAモデルとKIBAデータセットで使用すると、最高の非プライバシ保存代替手段と比較して最大15%パフォーマンスが向上する。
広範な実験の結果,dtiデータセット内の非iidデータ分布がfl性能を低下させることはないことがわかった。
さらに、新しいデータを追加するメリットと、より多くのクライアントを追加するコストの間には、実質的なトレードオフがあります。
関連論文リスト
- Non-IID data in Federated Learning: A Systematic Review with Taxonomy, Metrics, Methods, Frameworks and Future Directions [2.9434966603161072]
この体系的なレビューは、非IIDデータ、パーティションプロトコル、メトリクスの詳細な分類を提供することによってギャップを埋めることを目的としている。
非IIDデータに対処するための一般的なソリューションと、異種データを用いたフェデレートラーニングで使用される標準化されたフレームワークについて述べる。
論文 参考訳(メタデータ) (2024-11-19T09:53:28Z) - Stable Diffusion-based Data Augmentation for Federated Learning with Non-IID Data [9.045647166114916]
フェデレートラーニング(FL)は、分散的かつ協調的なモデルトレーニングのための有望なパラダイムである。
FLは、非独立分散(Non-IID)データ分散に直面すると、パフォーマンスの大幅な低下と収束性の低下に悩まされる。
我々は、最先端のテキスト・ツー・イメージ基盤モデルの強力な能力を活用する新しいアプローチであるGen-FedSDを紹介する。
論文 参考訳(メタデータ) (2024-05-13T16:57:48Z) - Approximate Gradient Coding for Privacy-Flexible Federated Learning with Non-IID Data [9.984630251008868]
この研究は、フェデレートラーニングにおける非IIDデータとストラグラー/ドロップアウトの課題に焦点を当てる。
クライアントのローカルデータの一部を非プライベートとしてモデル化する、プライバシフレキシブルなパラダイムを導入し、検討する。
論文 参考訳(メタデータ) (2024-04-04T15:29:50Z) - PS-FedGAN: An Efficient Federated Learning Framework Based on Partially
Shared Generative Adversarial Networks For Data Privacy [56.347786940414935]
分散計算のための効果的な学習パラダイムとして、フェデレートラーニング(FL)が登場した。
本研究は,部分的なGANモデル共有のみを必要とする新しいFLフレームワークを提案する。
PS-FedGANと名付けられたこの新しいフレームワークは、異種データ分散に対処するためのGANリリースおよびトレーニングメカニズムを強化する。
論文 参考訳(メタデータ) (2023-05-19T05:39:40Z) - Model-Contrastive Federated Domain Adaptation [3.9435648520559177]
フェデレートされたドメイン適応(FDA)は、ソースクライアント(ドメイン)から関連するが異なるターゲットクライアントに知識を協調的に転送することを目的としています。
我々は、bfコントラスト学習と視覚変換器(ViT)に基づくbfフェデレーションbfドメインbf適応に対処することを目的とした、FDACというモデルベース手法を提案する。
我々の知る限りでは、FDACはViTの潜在アーキテクチャをフェデレートされた環境下で操作することで、転送可能な表現を学習する最初の試みである。
論文 参考訳(メタデータ) (2023-05-07T23:48:03Z) - Evaluating the effect of data augmentation and BALD heuristics on
distillation of Semantic-KITTI dataset [63.20765930558542]
Active Learningは、自律運転データセットにおけるLiDAR知覚タスクに対して、比較的未調査のままである。
本研究では,データセット蒸留やコアサブセット選択のタスクに適用したベイズ能動学習手法を評価する。
また,ベイジアンALを用いたデータセット蒸留におけるデータ拡張の適用効果についても検討した。
論文 参考訳(メタデータ) (2023-02-21T13:56:47Z) - Proposing Novel Extrapolative Compounds by Nested Variational
Autoencoders [0.685316573653194]
著者らは2つの変分オートエンコーダ(VAE)をネストした深部生成モデルを提案した。
外部VAEは大規模公開データを用いて化合物の構造的特徴を学習し,内部VAEは小規模実験データから外部VAEの潜伏変数と特性との関係を学習する。
その結果, この損失関数は, 高性能な候補を生成する確率の向上に寄与することが示唆された。
論文 参考訳(メタデータ) (2023-02-06T04:12:12Z) - Rethinking Data Heterogeneity in Federated Learning: Introducing a New
Notion and Standard Benchmarks [65.34113135080105]
我々は、現在のセットアップにおけるデータ不均一性の問題が必ずしも問題であるだけでなく、FL参加者にとって有益であることを示す。
私たちの観察は直感的である。
私たちのコードはhttps://github.com/MMorafah/FL-SC-NIIDで利用可能です。
論文 参考訳(メタデータ) (2022-09-30T17:15:19Z) - FedDM: Iterative Distribution Matching for Communication-Efficient
Federated Learning [87.08902493524556]
フェデレートラーニング(FL)は近年、学術や産業から注目を集めている。
我々は,複数の局所的代理関数からグローバルなトレーニング目標を構築するためのFedDMを提案する。
そこで本研究では,各クライアントにデータ集合を構築し,元のデータから得られた損失景観を局所的にマッチングする。
論文 参考訳(メタデータ) (2022-07-20T04:55:18Z) - VFed-SSD: Towards Practical Vertical Federated Advertising [53.08038962443853]
本稿では,2つの制限を緩和する半教師付き分割蒸留フレームワーク VFed-SSD を提案する。
具体的には,垂直分割された未ラベルデータを利用する自己教師型タスクMatchedPair Detection (MPD) を開発する。
当社のフレームワークは,デプロイコストの最小化と大幅なパフォーマンス向上を図った,リアルタイム表示広告のための効率的なフェデレーション強化ソリューションを提供する。
論文 参考訳(メタデータ) (2022-05-31T17:45:30Z) - Provably Efficient Causal Reinforcement Learning with Confounded
Observational Data [135.64775986546505]
オフラインで収集されたデータセット(観測データ)を組み込んで、オンライン環境でのサンプル効率を改善する方法について検討する。
提案手法は,観測データを効率よく組み込んだ,分解された楽観的値反復 (DOVI) アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-22T14:49:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。