Self-Supervised Learning for Modeling Gamma-ray Variability in Blazars
- URL: http://arxiv.org/abs/2302.07700v1
- Date: Wed, 15 Feb 2023 14:57:46 GMT
- Title: Self-Supervised Learning for Modeling Gamma-ray Variability in Blazars
- Authors: Aryeh Brill
- Abstract summary: Blazars are active galactic nuclei with relativistic jets pointed almost directly at Earth.
Deep learning can help uncover structure in gamma-ray blazars' complex variability patterns.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Blazars are active galactic nuclei with relativistic jets pointed almost
directly at Earth. Blazars are characterized by strong, apparently stochastic
flux variability at virtually all observed wavelengths and timescales, from
minutes to years, the physical origin of which is still poorly understood. In
the high-energy gamma-ray band, the Large Area Telescope aboard the Fermi space
telescope (Fermi-LAT) has conducted regular monitoring of thousands of blazars
since 2008. Deep learning can help uncover structure in gamma-ray blazars'
complex variability patterns that traditional methods based on parametric
statistical modeling or manual feature engineering may miss. In this work, we
propose using a self-supervised Transformer encoder architecture to construct
an effective representation of blazar gamma-ray variability. Measurement
errors, upper limits, and missing data are accommodated using learned
encodings. The model predicts a set of quantiles for the flux probability
distribution at each time step, an architecture naturally suited for describing
data generated by a stochastic process. As a proof of concept for how the model
output can be analyzed to extract scientifically relevant information, a
preliminary search for weekly-timescale time-reversal asymmetry in gamma-ray
blazar light curves was conducted, finding no significant evidence for
asymmetry.
Related papers
- Multimodal Flare Forecasting with Deep Learning [0.2968738145616401]
We employ deep learning to compare the predictive capabilities of chromospheric and coronal UV and EUV emissions across different wavelengths.
Our findings indicate that individual EUV wavelengths can provide discriminatory power comparable or better to that of line-of-sight magnetograms.
arXiv Detail & Related papers (2024-10-21T15:42:47Z) - Real-time gravitational-wave inference for binary neutron stars using machine learning [71.29593576787549]
We present a machine learning framework that performs complete BNS inference in just one second without making any approximations.
Our approach enhances multi-messenger observations by providing (i) accurate localization even before the merger; (ii) improved localization precision by $sim30%$ compared to approximate low-latency methods; and (iii) detailed information on luminosity distance, inclination, and masses.
arXiv Detail & Related papers (2024-07-12T18:00:02Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Supernova Light Curves Approximation based on Neural Network Models [53.180678723280145]
Photometric data-driven classification of supernovae becomes a challenge due to the appearance of real-time processing of big data in astronomy.
Recent studies have demonstrated the superior quality of solutions based on various machine learning models.
We study the application of multilayer perceptron (MLP), bayesian neural network (BNN), and normalizing flows (NF) to approximate observations for a single light curve.
arXiv Detail & Related papers (2022-06-27T13:46:51Z) - Deep Learning Models of the Discrete Component of the Galactic
Interstellar Gamma-Ray Emission [61.26321023273399]
A significant point-like component from the small scale (or discrete) structure in the H2 interstellar gas might be present in the Fermi-LAT data.
We show that deep learning may be effectively employed to model the gamma-ray emission traced by these rare H2 proxies within statistical significance in data-rich regions.
arXiv Detail & Related papers (2022-06-06T18:00:07Z) - Tracking perovskite crystallization via deep learning-based feature
detection on 2D X-ray scattering data [137.47124933818066]
We propose an automated pipeline for the analysis of X-ray diffraction images based on the Faster R-CNN deep learning architecture.
We demonstrate our method on real-time tracking of organic-inorganic perovskite structure crystallization and test it on two applications.
arXiv Detail & Related papers (2022-02-22T15:39:00Z) - Real-time Detection of Anomalies in Multivariate Time Series of
Astronomical Data [0.0]
Astronomical transients are stellar objects that become temporarily brighter on various timescales.
New astronomical sky surveys are observing unprecedented numbers of multi-wavelength transients.
We present two novel methods that aim to quickly and automatically detect anomalous transient light curves in real-time.
arXiv Detail & Related papers (2021-12-15T19:02:54Z) - Real-time detection of anomalies in large-scale transient surveys [0.0]
We present two novel methods of automatically detecting anomalous transient light curves in real-time.
Both methods are based on the simple idea that if the light curves from a known population of transients can be accurately modelled, any deviations from model predictions are likely anomalies.
arXiv Detail & Related papers (2021-10-29T18:29:25Z) - Paying Attention to Astronomical Transients: Introducing the Time-series
Transformer for Photometric Classification [6.586394734694152]
We develop a new transformer architecture, first proposed for natural language processing.
We apply the time-series transformer to the task of photometric classification, minimising the reliance of expert domain knowledge.
We achieve a logarithmic-loss of 0.507 on imbalanced data in a representative setting using data from the Photometric LSST Astronomical Time-Series Classification Challenge.
arXiv Detail & Related papers (2021-05-13T10:16:13Z) - Semi-parametric $\gamma$-ray modeling with Gaussian processes and
variational inference [9.405199445496429]
Mismodeling the uncertain, diffuse emission of Galactic origin can seriously bias the characterization of astrophysical gamma-ray data.
We introduce a novel class of methods that use Gaussian processes and variational inference to build flexible background and signal models for gamma-ray analyses.
arXiv Detail & Related papers (2020-10-20T17:04:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.