Semi-parametric $\gamma$-ray modeling with Gaussian processes and
variational inference
- URL: http://arxiv.org/abs/2010.10450v1
- Date: Tue, 20 Oct 2020 17:04:37 GMT
- Title: Semi-parametric $\gamma$-ray modeling with Gaussian processes and
variational inference
- Authors: Siddharth Mishra-Sharma and Kyle Cranmer
- Abstract summary: Mismodeling the uncertain, diffuse emission of Galactic origin can seriously bias the characterization of astrophysical gamma-ray data.
We introduce a novel class of methods that use Gaussian processes and variational inference to build flexible background and signal models for gamma-ray analyses.
- Score: 9.405199445496429
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mismodeling the uncertain, diffuse emission of Galactic origin can seriously
bias the characterization of astrophysical gamma-ray data, particularly in the
region of the Inner Milky Way where such emission can make up over 80% of the
photon counts observed at ~GeV energies. We introduce a novel class of methods
that use Gaussian processes and variational inference to build flexible
background and signal models for gamma-ray analyses with the goal of enabling a
more robust interpretation of the make-up of the gamma-ray sky, particularly
focusing on characterizing potential signals of dark matter in the Galactic
Center with data from the Fermi telescope.
Related papers
- Real-time gravitational-wave inference for binary neutron stars using machine learning [71.29593576787549]
We present a machine learning framework that performs complete BNS inference in just one second without making any approximations.
Our approach enhances multi-messenger observations by providing (i) accurate localization even before the merger; (ii) improved localization precision by $sim30%$ compared to approximate low-latency methods; and (iii) detailed information on luminosity distance, inclination, and masses.
arXiv Detail & Related papers (2024-07-12T18:00:02Z) - Galaxy spectroscopy without spectra: Galaxy properties from photometric images with conditional diffusion models [3.556281115019309]
We develop a generative AI method capable of predicting optical galaxy spectra from photometric broad-band images alone.
This work is the first attempt in the literature to infer velocity dispersion from photometric images.
We can predict the presence of an active galactic nucleus up to an accuracy of 82%.
arXiv Detail & Related papers (2024-06-26T08:49:51Z) - Self-Supervised Learning for Modeling Gamma-ray Variability in Blazars [0.0]
Blazars are active galactic nuclei with relativistic jets pointed almost directly at Earth.
Deep learning can help uncover structure in gamma-ray blazars' complex variability patterns.
arXiv Detail & Related papers (2023-02-15T14:57:46Z) - Pixelated Reconstruction of Foreground Density and Background Surface
Brightness in Gravitational Lensing Systems using Recurrent Inference
Machines [116.33694183176617]
We use a neural network based on the Recurrent Inference Machine to reconstruct an undistorted image of the background source and the lens mass density distribution as pixelated maps.
When compared to more traditional parametric models, the proposed method is significantly more expressive and can reconstruct complex mass distributions.
arXiv Detail & Related papers (2023-01-10T19:00:12Z) - Toward deep-learning-assisted spectrally-resolved imaging of magnetic
noise [52.77024349608834]
We implement a deep neural network to efficiently reconstruct the spectral density of the underlying fluctuating magnetic field.
These results create opportunities for the application of machine-learning methods to color-center-based nanoscale sensing and imaging.
arXiv Detail & Related papers (2022-08-01T19:18:26Z) - Supernova Light Curves Approximation based on Neural Network Models [53.180678723280145]
Photometric data-driven classification of supernovae becomes a challenge due to the appearance of real-time processing of big data in astronomy.
Recent studies have demonstrated the superior quality of solutions based on various machine learning models.
We study the application of multilayer perceptron (MLP), bayesian neural network (BNN), and normalizing flows (NF) to approximate observations for a single light curve.
arXiv Detail & Related papers (2022-06-27T13:46:51Z) - Deep Learning Models of the Discrete Component of the Galactic
Interstellar Gamma-Ray Emission [61.26321023273399]
A significant point-like component from the small scale (or discrete) structure in the H2 interstellar gas might be present in the Fermi-LAT data.
We show that deep learning may be effectively employed to model the gamma-ray emission traced by these rare H2 proxies within statistical significance in data-rich regions.
arXiv Detail & Related papers (2022-06-06T18:00:07Z) - A neural simulation-based inference approach for characterizing the
Galactic Center $\gamma$-ray excess [9.101294179203794]
The Fermi gamma-ray Galactic Center Excess (GCE) has remained a persistent mystery for over a decade.
We use recent advancements in the field of simulation-based inference to characterize the contribution of modeled components to the GCE.
arXiv Detail & Related papers (2021-10-13T18:00:00Z) - Inferring dark matter substructure with astrometric lensing beyond the
power spectrum [0.0]
We introduce a novel method to search for global dark matter-induced gravitational lensing signatures in astrometric datasets.
Our method based on neural likelihood-ratio estimation shows significantly enhanced sensitivity to a cold dark matter population.
arXiv Detail & Related papers (2021-10-04T18:00:00Z) - Nitrogen-vacancy defect emission spectra in the vicinity of an
adjustable silver mirror [62.997667081978825]
Optical emitters of quantum radiation in the solid state are important building blocks for emerging technologies.
We experimentally study the emission spectrum of an ensemble of nitrogen-vacancy defects implanted around 8nm below the planar diamond surface.
arXiv Detail & Related papers (2020-03-31T10:43:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.