Shared Stochastic Gaussian Process Latent Variable Models: A Multi-modal Generative Model for Quasar Spectra
- URL: http://arxiv.org/abs/2502.19824v1
- Date: Thu, 27 Feb 2025 06:57:23 GMT
- Title: Shared Stochastic Gaussian Process Latent Variable Models: A Multi-modal Generative Model for Quasar Spectra
- Authors: Vidhi Lalchand, Anna-Christina Eilers,
- Abstract summary: We focus on an application in astrophysics where data sets typically contain both observed spectral features and scientific properties of astrophysical objects such as galaxies or exoplanets.<n>We study the spectra of very luminous galaxies known as quasars, along with their properties, in multiple observation spaces.<n>A single data point is then characterized by different classes of observations, each with different likelihoods.
- Score: 2.3099448395832956
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work proposes a scalable probabilistic latent variable model based on Gaussian processes (Lawrence, 2004) in the context of multiple observation spaces. We focus on an application in astrophysics where data sets typically contain both observed spectral features and scientific properties of astrophysical objects such as galaxies or exoplanets. In our application, we study the spectra of very luminous galaxies known as quasars, along with their properties, such as the mass of their central supermassive black hole, accretion rate, and luminosity-resulting in multiple observation spaces. A single data point is then characterized by different classes of observations, each with different likelihoods. Our proposed model extends the baseline stochastic variational Gaussian process latent variable model (GPLVM) introduced by Lalchand et al. (2022) to this setting, proposing a seamless generative model where the quasar spectra and scientific labels can be generated simultaneously using a shared latent space as input to different sets of Gaussian process decoders, one for each observation space. Additionally, this framework enables training in a missing data setting where a large number of dimensions per data point may be unknown or unobserved. We demonstrate high-fidelity reconstructions of the spectra and scientific labels during test-time inference and briefly discuss the scientific interpretations of the results, along with the significance of such a generative model.
Related papers
- Multi-View Oriented GPLVM: Expressiveness and Efficiency [8.459922325396155]
We introduce a new duality between the spectral density and the kernel function.
We derive a generic and expressive kernel termed Next-Gen Spectral Mixture (NG-SM) for MV-GPLVMs.
Our proposed method consistently outperforms state-of-the-art models in learning meaningful latent representations.
arXiv Detail & Related papers (2025-02-12T09:49:25Z) - Reconstructing Galaxy Cluster Mass Maps using Score-based Generative Modeling [9.386611764730791]
We present a novel approach to reconstruct gas and dark matter projected density maps of galaxy clusters using score-based generative modeling.
Our diffusion model takes in mock SZ and X-ray images as conditional observations, and generates realizations of corresponding gas and dark matter maps by sampling from a learned data posterior.
arXiv Detail & Related papers (2024-10-03T18:00:03Z) - Inferring Kernel $ε$-Machines: Discovering Structure in Complex Systems [49.1574468325115]
We introduce causal diffusion components that encode the kernel causal-state estimates as a set of coordinates in a reduced dimension space.
We show how each component extracts predictive features from data and demonstrate their application on four examples.
arXiv Detail & Related papers (2024-10-01T21:14:06Z) - Gaussian Entanglement Measure: Applications to Multipartite Entanglement
of Graph States and Bosonic Field Theory [50.24983453990065]
An entanglement measure based on the Fubini-Study metric has been recently introduced by Cocchiarella and co-workers.
We present the Gaussian Entanglement Measure (GEM), a generalization of geometric entanglement measure for multimode Gaussian states.
By providing a computable multipartite entanglement measure for systems with a large number of degrees of freedom, we show that our definition can be used to obtain insights into a free bosonic field theory.
arXiv Detail & Related papers (2024-01-31T15:50:50Z) - Datacube segmentation via Deep Spectral Clustering [76.48544221010424]
Extended Vision techniques often pose a challenge in their interpretation.
The huge dimensionality of data cube spectra poses a complex task in its statistical interpretation.
In this paper, we explore the possibility of applying unsupervised clustering methods in encoded space.
A statistical dimensional reduction is performed by an ad hoc trained (Variational) AutoEncoder, while the clustering process is performed by a (learnable) iterative K-Means clustering algorithm.
arXiv Detail & Related papers (2024-01-31T09:31:28Z) - Scattering Spectra Models for Physics [6.4895077889174395]
This paper introduces scattering spectra models for stationary fields.
We show that they provide accurate and robust statistical descriptions of a wide range of fields encountered in physics.
These generic models can be used for data exploration, classification, parameter inference, symmetry detection, and component separation.
arXiv Detail & Related papers (2023-06-29T18:00:00Z) - Deep Learning Models of the Discrete Component of the Galactic
Interstellar Gamma-Ray Emission [61.26321023273399]
A significant point-like component from the small scale (or discrete) structure in the H2 interstellar gas might be present in the Fermi-LAT data.
We show that deep learning may be effectively employed to model the gamma-ray emission traced by these rare H2 proxies within statistical significance in data-rich regions.
arXiv Detail & Related papers (2022-06-06T18:00:07Z) - Learning to discover: expressive Gaussian mixture models for
multi-dimensional simulation and parameter inference in the physical sciences [0.0]
We show that density models describing multiple observables may be created using an auto-regressive Gaussian mixture model.
The model is designed to capture how observable spectra are deformed by hypothesis variations.
It may be used as a statistical model for scientific discovery in interpreting experimental observations.
arXiv Detail & Related papers (2021-08-25T21:27:29Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Semi-parametric $\gamma$-ray modeling with Gaussian processes and
variational inference [9.405199445496429]
Mismodeling the uncertain, diffuse emission of Galactic origin can seriously bias the characterization of astrophysical gamma-ray data.
We introduce a novel class of methods that use Gaussian processes and variational inference to build flexible background and signal models for gamma-ray analyses.
arXiv Detail & Related papers (2020-10-20T17:04:37Z) - Bayesian Sparse Factor Analysis with Kernelized Observations [67.60224656603823]
Multi-view problems can be faced with latent variable models.
High-dimensionality and non-linear issues are traditionally handled by kernel methods.
We propose merging both approaches into single model.
arXiv Detail & Related papers (2020-06-01T14:25:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.