論文の概要: Fairness in Socio-technical Systems: a Case Study of Wikipedia
- arxiv url: http://arxiv.org/abs/2302.07787v1
- Date: Wed, 15 Feb 2023 17:16:53 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-19 14:12:04.373641
- Title: Fairness in Socio-technical Systems: a Case Study of Wikipedia
- Title(参考訳): 社会技術システムにおける公正性--ウィキペディアを事例として
- Authors: Mir Saeed Damadi and Alan Davoust
- Abstract要約: 我々は,Wikipediaにおける様々なバイアスを記述した75の論文を体系的にレビューし,アルゴリズムフェアネス研究による害の概念を分類し,関連づける。
本稿では,各問題に関連する公正性の規範的期待点を特定し,機械学習による意思決定システムに提案されている既存の基準の適用性について論じる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Problems broadly known as algorithmic bias frequently occur in the context of
complex socio-technical systems (STS), where observed biases may not be
directly attributable to a single automated decision algorithm. As a first
investigation of fairness in STS, we focus on the case of Wikipedia. We
systematically review 75 papers describing different types of bias in
Wikipedia, which we classify and relate to established notions of harm from
algorithmic fairness research. By analysing causal relationships between the
observed phenomena, we demonstrate the complexity of the socio-technical
processes causing harm. Finally, we identify the normative expectations of
fairness associated with the different problems and discuss the applicability
of existing criteria proposed for machine learning-driven decision systems.
- Abstract(参考訳): 一般にアルゴリズムバイアスとして知られる問題は、観察されたバイアスが単一の自動決定アルゴリズムに直接帰属できない複雑な社会工学システム(sts)の文脈で頻繁に発生する。
STSにおけるフェアネスの最初の調査として、ウィキペディアの事例に焦点を当てる。
アルゴリズム的公平性研究の確立した害概念を分類し,関連づけたウィキペディアのバイアスの種類を記述した75の論文を体系的に検討した。
観察された現象間の因果関係を解析することにより,社会工学的プロセスが害をもたらす複雑さを実証する。
最後に、異なる問題に関連する公平性の規範的期待を識別し、機械学習駆動意思決定システムに提案されている既存の基準の適用性について議論する。
関連論文リスト
- Whither Bias Goes, I Will Go: An Integrative, Systematic Review of Algorithmic Bias Mitigation [1.0470286407954037]
機械学習(ML)モデルは不平等をバイアスし、持続し、悪化させる可能性があるという懸念が高まっている。
本稿では,MLアセスメントを開発し,バイアス軽減手法を適用した4段階モデルを提案する。
論文 参考訳(メタデータ) (2024-10-21T02:32:14Z) - Interactive System-wise Anomaly Detection [66.3766756452743]
異常検出は様々なアプリケーションにおいて基本的な役割を果たす。
既存のメソッドでは、インスタンスがデータとして容易に観察できないシステムであるシナリオを扱うのが難しい。
システム埋め込みを学習するエンコーダデコーダモジュールを含むエンドツーエンドアプローチを開発する。
論文 参考訳(メタデータ) (2023-04-21T02:20:24Z) - Fair Enough: Standardizing Evaluation and Model Selection for Fairness
Research in NLP [64.45845091719002]
現代のNLPシステムは様々なバイアスを示しており、モデル偏見に関する文献が増えている。
本稿では,その現状を解明し,公正学習における意味ある進歩の道筋を立案することを目的とする。
論文 参考訳(メタデータ) (2023-02-11T14:54:00Z) - Survey on Fairness Notions and Related Tensions [4.257210316104905]
自動化された意思決定システムは、雇用やローンの貸与といった問題において、逐次的な決定を下すのにますます使われています。
しかし、客観的機械学習(ML)アルゴリズムはバイアスを起こしやすいため、不公平な判断を下す。
本稿では、一般的に使われている公正概念を調査し、プライバシと精度で両者間の緊張関係について論じる。
論文 参考訳(メタデータ) (2022-09-16T13:36:05Z) - Investigating Bias with a Synthetic Data Generator: Empirical Evidence
and Philosophical Interpretation [66.64736150040093]
機械学習の応用は、私たちの社会でますます広まりつつある。
リスクは、データに埋め込まれたバイアスを体系的に広めることである。
本稿では,特定の種類のバイアスとその組み合わせで合成データを生成するフレームワークを導入することにより,バイアスを分析することを提案する。
論文 参考訳(メタデータ) (2022-09-13T11:18:50Z) - Causal Fairness Analysis [68.12191782657437]
意思決定設定における公平性の問題を理解し、モデル化し、潜在的に解決するためのフレームワークを導入します。
我々のアプローチの主な洞察は、観測データに存在する格差の定量化と、基礎となる、しばしば観測されていない、因果的なメカニズムの収集を結びつけることである。
本研究は,文献中の異なる基準間の関係を整理し,説明するための最初の体系的試みであるフェアネスマップにおいて,本研究の成果を左右するものである。
論文 参考訳(メタデータ) (2022-07-23T01:06:34Z) - Anatomizing Bias in Facial Analysis [86.79402670904338]
既存の顔分析システムでは、特定の集団群に対して偏りのある結果が得られることが示されている。
これらのシステムは、個人の性別、アイデンティティ、肌のトーンに基づいて差別されないようにすることが義務づけられている。
これはAIシステムにおけるバイアスの識別と緩和の研究につながった。
論文 参考訳(メタデータ) (2021-12-13T09:51:13Z) - Bias in Multimodal AI: Testbed for Fair Automatic Recruitment [73.85525896663371]
異種情報ソースに基づく現在のマルチモーダルアルゴリズムは、データ中の機密要素や内部バイアスによってどのように影響を受けるかを検討する。
我々は、性別や人種の偏りを意識的に評価したマルチモーダルな合成プロファイルを用いて、自動求人アルゴリズムを訓練する。
我々の方法論と結果は、一般により公平なAIベースのツール、特により公平な自動採用システムを生成する方法を示している。
論文 参考訳(メタデータ) (2020-04-15T15:58:05Z) - Demographic Bias in Biometrics: A Survey on an Emerging Challenge [0.0]
生体計測システムは、人間の特定の生物学的または法医学的特性の特異性に依存している。
自動意思決定システムにおける体系的バイアスの存在に関して、公共および学術的な懸念の波が相次いだ。
論文 参考訳(メタデータ) (2020-03-05T09:07:59Z) - Algorithmic Fairness [11.650381752104298]
正確であるだけでなく、客観的かつ公正なAIアルゴリズムを開発することが不可欠である。
近年の研究では、アルゴリズムによる意思決定は本質的に不公平である可能性が示されている。
論文 参考訳(メタデータ) (2020-01-21T19:01:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。