A Quantum Computing Implementation of Nuclear-Electronic Orbital (NEO)
Theory: Towards an Exact pre-Born-Oppenheimer Formulation of Molecular
Quantum Systems
- URL: http://arxiv.org/abs/2302.07814v1
- Date: Wed, 15 Feb 2023 17:55:15 GMT
- Title: A Quantum Computing Implementation of Nuclear-Electronic Orbital (NEO)
Theory: Towards an Exact pre-Born-Oppenheimer Formulation of Molecular
Quantum Systems
- Authors: Arseny Kovyrshin, M{\aa}rten Skogh, Anders Broo, Stefano Mensa, Emre
Sahin, Jason Crain, Ivano Tavernelli
- Abstract summary: We introduce a methodology for the efficient quantum treatment of the electron-nuclear problem on near-term quantum computers.
We generalize the electronic two-qubit tapering scheme to include nuclei by exploiting symmetries inherent in the NEO framework.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nuclear quantum phenomena beyond the Born-Oppenheimer approximation are known
to play an important role in a growing number of chemical and biological
processes. While there exists no unique consensus on a rigorous and efficient
implementation of coupled electron-nuclear quantum dynamics, it is recognised
that these problems scale exponentially with system size on classical
processors and therefore may benefit from quantum computing implementations.
Here, we introduce a methodology for the efficient quantum treatment of the
electron-nuclear problem on near-term quantum computers, based upon the
Nuclear-Electronic Orbital (NEO) approach. We generalize the electronic
two-qubit tapering scheme to include nuclei by exploiting symmetries inherent
in the NEO framework; thereby reducing the hamiltonian dimension, number of
qubits, gates, and measurements needed for calculations. We also develop
parameter transfer and initialisation techniques, which improve convergence
behavior relative to conventional initialisation. These techniques are applied
to H$_2$ and malonaldehyde for which results agree with Nuclear-Electronic
Orbital Full Configuration Interaction and Nuclear-Electronic Orbital Complete
Active Space Configuration Interaction benchmarks for ground state energy to
within $10^{-6}$ Ha and entanglement entropy to within $10^{-4}$. These
implementations therefore significantly reduce resource requirements for full
quantum simulations of molecules on near-term quantum devices while maintaining
high accuracy.
Related papers
- Analog Quantum Simulation of Coupled Electron-Nuclear Dynamics in Molecules [0.0]
We present the first analog quantum simulation approach for molecular vibronic dynamics in a pre-BO framework.
We show that our approach has exponential savings in resource and computational costs compared to the equivalent classical algorithms.
arXiv Detail & Related papers (2024-09-06T17:42:34Z) - Non-unitary Coupled Cluster Enabled by Mid-circuit Measurements on Quantum Computers [37.69303106863453]
We propose a state preparation method based on coupled cluster (CC) theory, which is a pillar of quantum chemistry on classical computers.
Our approach leads to a reduction of the classical computation overhead, and the number of CNOT and T gates by 28% and 57% on average.
arXiv Detail & Related papers (2024-06-17T14:10:10Z) - Deep Quantum Circuit Simulations of Low-Energy Nuclear States [51.823503818486394]
We present advances in high-performance numerical simulations of deep quantum circuits.
circuits up to 21 qubits and more than 115,000,000 gates can be efficiently simulated.
arXiv Detail & Related papers (2023-10-26T19:10:58Z) - Nonadiabatic nuclear-electron dynamics: a quantum computing approach [0.0]
We propose a quantum algorithm for the simulation of the time-evolution of molecular systems in the second quantization framework.
We show how the entanglement between the electronic and nuclear degrees of freedom can persist over long times if electrons are not adiabatically following the nuclear displacement.
The proposed quantum algorithm may become a valid candidate for the study of electron-nuclear quantum phenomena when sufficiently powerful quantum computers become available.
arXiv Detail & Related papers (2023-06-02T16:44:22Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Nuclear two point correlation functions on a quantum-computer [105.89228861548395]
We use current quantum hardware and error mitigation protocols to calculate response functions for a highly simplified nuclear model.
In this work we use current quantum hardware and error mitigation protocols to calculate response functions for a modified Fermi-Hubbard model in two dimensions with three distinguishable nucleons on four lattice sites.
arXiv Detail & Related papers (2021-11-04T16:25:33Z) - Electronic quantum trajectories with quantum nuclei [0.0]
We generalize the theory of electronic quantum trajectories to a fully quantum-mechanical treatment of the nuclei.
We show that the nuclei can be viewed as a quantum clock for the electronic motion and we develop a fully quantum-mechanical clock-dependent version of quantum hydrodynamics.
arXiv Detail & Related papers (2021-09-28T11:48:10Z) - Quantum-Classical Hybrid Algorithm for the Simulation of All-Electron
Correlation [58.720142291102135]
We present a novel hybrid-classical algorithm that computes a molecule's all-electron energy and properties on the classical computer.
We demonstrate the ability of the quantum-classical hybrid algorithms to achieve chemically relevant results and accuracy on currently available quantum computers.
arXiv Detail & Related papers (2021-06-22T18:00:00Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z) - Quantum computing with neutral atoms [0.0]
We review the main characteristics of neutral atom quantum processors from atoms / qubits to application interfaces.
We show how applications ranging from optimization challenges to simulation of quantum systems can be explored.
We give evidence of the intrinsic scalability of neutral atom quantum processors in the 100-1,000 qubits range.
arXiv Detail & Related papers (2020-06-22T15:09:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.