Electronic quantum trajectories with quantum nuclei
- URL: http://arxiv.org/abs/2109.13632v1
- Date: Tue, 28 Sep 2021 11:48:10 GMT
- Title: Electronic quantum trajectories with quantum nuclei
- Authors: Axel Schild
- Abstract summary: We generalize the theory of electronic quantum trajectories to a fully quantum-mechanical treatment of the nuclei.
We show that the nuclei can be viewed as a quantum clock for the electronic motion and we develop a fully quantum-mechanical clock-dependent version of quantum hydrodynamics.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum trajectory calculations for electrons are a useful tool in the field
of molecular dynamics, e.g. to understand processes in ultrafast spectroscopy.
They have, however, two limitation: On the one hand, such calculations are
typically based on the Born-Oppenheimer approximation (BOA) and the electron
dynamics for stationary nuclei is considered, thus neglecting quantum effects
of the nuclei. On the other hand, even if the quantum nuclear motion would be
taken into account, a BOA dynamics on a single potential energy surface would
not provide any electron trajectories because the electronic part is treated as
a stationary problem. By using the exact factorization method, we overcome
these limitations and generalize the theory of electronic quantum trajectories
to a fully quantum-mechanical treatment of the nuclei. After reviewing the
time-dependent theory of quantum hydrodynamics and quantum trajectories, we
show that the nuclei can be viewed as a quantum clock for the electronic motion
and we develop a fully quantum-mechanical clock-dependent version of quantum
hydrodynamics. This theory is used to obtain electronic trajectories for
quantum nuclei, as is exemplified for a model system of a proton-coupled
electron transfer dynamics. Our work generalizes the concept of quantum
trajectories and lays the foundations for the development of trajectory-based
simulation methods of electron dynamics beyond the BOA.
Related papers
- Quantum state preparation and readout with modulated electrons [0.0]
We study the capabilities of modulated electron wavefunctions for the preparation and readout of the quantum state of the quantum emitters (QEs) they interact with.
First, we consider periodic electron combs, which do not produce QE-electron entanglement, preserving the purity of the QE while inducing Rabi-like dynamics in it.
We extend our findings to realistic, non-ideally modulated electron wavepackets, showing that the phenomenology persists.
arXiv Detail & Related papers (2024-07-25T09:09:33Z) - Electronic Correlations in Multielectron Silicon Quantum Dots [0.3793387630509845]
Silicon metal-oxide-semiconductor based quantum dots present a promising pathway for realizing practical quantum computers.
Hartree-Fock theory is an imperative tool for the electronic structure modelling of multi-electron quantum dots.
We present a Hartree-Fock-based method that accounts for these complexities for the modelling of silicon quantum dots.
arXiv Detail & Related papers (2024-07-05T06:46:38Z) - Quantum nuclear dynamics on a distributed set of ion-trap quantum computing systems [0.0]
We use an IonQ 11-qubit trapped-ion quantum computer, Harmony, to study the quantum wavepacket dynamics of a shared-proton.
We also provide the first application of distributed quantum computing for chemical dynamics problems.
arXiv Detail & Related papers (2024-06-07T18:27:50Z) - Hysteresis and Self-Oscillations in an Artificial Memristive Quantum Neuron [79.16635054977068]
We study an artificial neuron circuit containing a quantum memristor in the presence of relaxation and dephasing.
We demonstrate that this physical principle enables hysteretic behavior of the current-voltage characteristics of the quantum device.
arXiv Detail & Related papers (2024-05-01T16:47:23Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Nonadiabatic nuclear-electron dynamics: a quantum computing approach [0.0]
We propose a quantum algorithm for the simulation of the time-evolution of molecular systems in the second quantization framework.
We show how the entanglement between the electronic and nuclear degrees of freedom can persist over long times if electrons are not adiabatically following the nuclear displacement.
The proposed quantum algorithm may become a valid candidate for the study of electron-nuclear quantum phenomena when sufficiently powerful quantum computers become available.
arXiv Detail & Related papers (2023-06-02T16:44:22Z) - A Quantum Computing Implementation of Nuclear-Electronic Orbital (NEO)
Theory: Towards an Exact pre-Born-Oppenheimer Formulation of Molecular
Quantum Systems [0.0]
We introduce a methodology for the efficient quantum treatment of the electron-nuclear problem on near-term quantum computers.
We generalize the electronic two-qubit tapering scheme to include nuclei by exploiting symmetries inherent in the NEO framework.
arXiv Detail & Related papers (2023-02-15T17:55:15Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Demonstration of electron-nuclear decoupling at a spin clock transition [54.088309058031705]
Clock transitions protect molecular spin qubits from magnetic noise.
linear coupling to nuclear degrees of freedom causes a modulation and decay of electronic coherence.
An absence of quantum information leakage to the nuclear bath provides opportunities to characterize other decoherence sources.
arXiv Detail & Related papers (2021-06-09T16:23:47Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.