Dissecting the Runtime Performance of the Training, Fine-tuning, and
Inference of Large Language Models
- URL: http://arxiv.org/abs/2311.03687v2
- Date: Fri, 1 Dec 2023 15:37:07 GMT
- Title: Dissecting the Runtime Performance of the Training, Fine-tuning, and
Inference of Large Language Models
- Authors: Longteng Zhang, Xiang Liu, Zeyu Li, Xinglin Pan, Peijie Dong, Ruibo
Fan, Rui Guo, Xin Wang, Qiong Luo, Shaohuai Shi, Xiaowen Chu
- Abstract summary: Large Language Models (LLMs) have seen great advance in both academia and industry.
We benchmark the end-to-end performance of pre-training, fine-tuning, and serving LLMs in different sizes.
Then, we dive deeper to provide a detailed runtime analysis of the sub-modules, including computing and communication operators in LLMs.
- Score: 26.2566707495948
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have seen great advance in both academia and
industry, and their popularity results in numerous open-source frameworks and
techniques in accelerating LLM pre-training, fine-tuning, and inference.
Training and deploying LLMs are expensive as it requires considerable computing
resources and memory, hence many efficient approaches have been developed for
improving system pipelines as well as operators. However, the runtime
performance can vary significantly across hardware and software stacks, which
makes it difficult to choose the best configuration. In this work, we aim to
benchmark the performance from both macro and micro perspectives. First, we
benchmark the end-to-end performance of pre-training, fine-tuning, and serving
LLMs in different sizes , i.e., 7, 13, and 70 billion parameters (7B, 13B, and
70B) on three 8-GPU platforms with and without individual optimization
techniques, including ZeRO, quantization, recomputation, FlashAttention. Then,
we dive deeper to provide a detailed runtime analysis of the sub-modules,
including computing and communication operators in LLMs. For end users, our
benchmark and findings help better understand different optimization
techniques, training and inference frameworks, together with hardware platforms
in choosing configurations for deploying LLMs. For researchers, our in-depth
module-wise analyses discover potential opportunities for future work to
further optimize the runtime performance of LLMs.
Related papers
- Enhancing the Reasoning Ability of Multimodal Large Language Models via Mixed Preference Optimization [65.64108848398696]
We introduce a preference optimization process to enhance the multimodal reasoning capabilities of MLLMs.
We develop a simple yet effective method, termed Mixed Preference Optimization (MPO), which boosts multimodal CoT performance.
Our model, InternVL2-8B-MPO, achieves an accuracy of 67.0 on MathVista, outperforming InternVL2-8B by 8.7 points and achieving performance comparable to the 10x larger InternVL2-76B.
arXiv Detail & Related papers (2024-11-15T18:59:27Z) - Large Language Model Inference Acceleration: A Comprehensive Hardware Perspective [32.827076621809965]
Large Language Models (LLMs) have demonstrated remarkable capabilities across various fields, from natural language understanding to text generation.
The advancements in generative LLMs are closely intertwined with the development of hardware capabilities.
This paper comprehensively surveys efficient generative LLM inference on different hardware platforms.
arXiv Detail & Related papers (2024-10-06T12:42:04Z) - LLM-Pilot: Characterize and Optimize Performance of your LLM Inference Services [0.5143325455623888]
LLM-Pilot is a first-of-its-kind system for characterizing and predicting performance of LLM inference services.
It learns a predictive model, which can be used to recommend the most cost-effective hardware for a previously unseen LLM.
Compared to existing methods, LLM-Pilot can deliver on performance requirements 33% more frequently, whilst reducing costs by 60% on average.
arXiv Detail & Related papers (2024-10-03T12:19:06Z) - Achieving Peak Performance for Large Language Models: A Systematic Review [0.0]
Large language models (LLMs) have achieved remarkable success in natural language processing (NLP)
As models grow into the trillion- parameter range, computational and memory costs increase significantly.
This makes it difficult for many researchers to access the resources needed to train or apply these models.
arXiv Detail & Related papers (2024-09-07T13:57:41Z) - LongRecipe: Recipe for Efficient Long Context Generalization in Large Language Models [72.71150585370147]
LongRecipe is an efficient training strategy for extending the context window of large language models.
It simulates long-sequence inputs while maintaining training efficiency and significantly improves the model's understanding of long-range dependencies.
LongRecipe can utilize long sequences while requiring only 30% of the target context window size, and reduces computational training resource over 85% compared to full sequence training.
arXiv Detail & Related papers (2024-08-31T17:19:30Z) - The Ultimate Guide to Fine-Tuning LLMs from Basics to Breakthroughs: An Exhaustive Review of Technologies, Research, Best Practices, Applied Research Challenges and Opportunities [0.35998666903987897]
This report examines the fine-tuning of Large Language Models (LLMs)
It outlines the historical evolution of LLMs from traditional Natural Language Processing (NLP) models to their pivotal role in AI.
The report introduces a structured seven-stage pipeline for fine-tuning LLMs.
arXiv Detail & Related papers (2024-08-23T14:48:02Z) - ScaleLLM: A Resource-Frugal LLM Serving Framework by Optimizing End-to-End Efficiency [20.33467627548677]
Large language models (LLMs) have surged in popularity and are extensively used in commercial applications.
We conduct a detailed analysis to identify major bottlenecks that impact end-to-end latency in LLM serving systems.
We then propose ScaleLLM, an optimized system for resource-efficient LLM serving.
arXiv Detail & Related papers (2024-07-23T23:37:29Z) - Not All Experts are Equal: Efficient Expert Pruning and Skipping for Mixture-of-Experts Large Language Models [90.14693869269519]
MoE LLMs can achieve higher performance with fewer parameters, but it is still hard to deploy them due to their immense parameter sizes.
This paper mainly aims to enhance the deployment efficiency of MoE LLMs by introducing plug-and-play expert-level sparsification techniques.
arXiv Detail & Related papers (2024-02-22T18:56:07Z) - CoLLiE: Collaborative Training of Large Language Models in an Efficient
Way [59.09824823710863]
CoLLiE is an efficient library that facilitates collaborative training of large language models.
With its modular design and comprehensive functionality, CoLLiE offers a balanced blend of efficiency, ease of use, and customization.
arXiv Detail & Related papers (2023-12-01T08:02:16Z) - FederatedScope-LLM: A Comprehensive Package for Fine-tuning Large
Language Models in Federated Learning [70.38817963253034]
This paper first discusses these challenges of federated fine-tuning LLMs, and introduces our package FS-LLM as a main contribution.
We provide comprehensive federated parameter-efficient fine-tuning algorithm implementations and versatile programming interfaces for future extension in FL scenarios.
We conduct extensive experiments to validate the effectiveness of FS-LLM and benchmark advanced LLMs with state-of-the-art parameter-efficient fine-tuning algorithms in FL settings.
arXiv Detail & Related papers (2023-09-01T09:40:36Z) - Learning Performance-Improving Code Edits [107.21538852090208]
We introduce a framework for adapting large language models (LLMs) to high-level program optimization.
First, we curate a dataset of performance-improving edits made by human programmers of over 77,000 competitive C++ programming submission pairs.
For prompting, we propose retrieval-based few-shot prompting and chain-of-thought, and for finetuning, these include performance-conditioned generation and synthetic data augmentation based on self-play.
arXiv Detail & Related papers (2023-02-15T18:59:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.