論文の概要: From Graph Generation to Graph Classification
- arxiv url: http://arxiv.org/abs/2302.07989v1
- Date: Wed, 15 Feb 2023 23:18:47 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-17 15:40:17.102336
- Title: From Graph Generation to Graph Classification
- Title(参考訳): グラフ生成からグラフ分類へ
- Authors: Oliver Schulte
- Abstract要約: グラフを与えられたクラスラベルの確率の分類式を導出する。
新たな条件付きELBOを使用して、識別のための生成グラフ自動エンコーダモデルをトレーニングすることができる。
- 参考スコア(独自算出の注目度): 15.884115251561807
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This note describes a new approach to classifying graphs that leverages graph
generative models (GGM). Assuming a GGM that defines a joint probability
distribution over graphs and their class labels, I derive classification
formulas for the probability of a class label given a graph. A new conditional
ELBO can be used to train a generative graph auto-encoder model for
discrimination. While leveraging generative models for classification has been
well explored for non-relational i.i.d. data, to our knowledge it is a novel
approach to graph classification.
- Abstract(参考訳): 本稿では,グラフ生成モデル(GGM)を利用したグラフの分類手法について述べる。
グラフとそのクラスラベル上の合同確率分布を定義する ggm を仮定すると、私はグラフが与えられたクラスラベルの確率の分類公式を導出する。
新しい条件付きelboは、識別のための生成グラフオートエンコーダモデルを訓練するために使用できる。
生成モデルを分類に活用することは、非関係データ、すなわちデータに対してよく研究されているが、我々の知識では、グラフ分類に対する新しいアプローチである。
関連論文リスト
- GraphRCG: Self-Conditioned Graph Generation [78.69810678803248]
本稿では,グラフ分布を明示的にモデル化する自己条件付きグラフ生成フレームワークを提案する。
本フレームワークは, 既存のグラフ生成手法に比べて, 学習データに対するグラフ品質と忠実度において優れた性能を示す。
論文 参考訳(メタデータ) (2024-03-02T02:28:20Z) - Generating In-Distribution Proxy Graphs for Explaining Graph Neural Networks [17.71313964436965]
GNNの説明可能性のための一般的なパラダイムは、ラベルを元のグラフと比較することで説明可能な部分グラフを特定することである。
この課題は、トレーニングセットの元のグラフから説明可能なサブグラフのセットへの相当な分布シフトのため、難しい。
本稿では,学習データの分布を示す説明可能な部分グラフのプロキシグラフを生成する手法を提案する。
論文 参考訳(メタデータ) (2024-02-03T05:19:02Z) - Semi-Supervised Hierarchical Graph Classification [54.25165160435073]
ノードがグラフのインスタンスである階層グラフにおけるノード分類問題について検討する。
本稿では階層グラフ相互情報(HGMI)を提案し,理論的保証をもってHGMIを計算する方法を提案する。
本稿では,この階層グラフモデリングとSEAL-CI法がテキストおよびソーシャルネットワークデータに与える影響を実証する。
論文 参考訳(メタデータ) (2022-06-11T04:05:29Z) - Neighborhood Random Walk Graph Sampling for Regularized Bayesian Graph
Convolutional Neural Networks [0.6236890292833384]
本稿では,近隣ランダムウォークサンプリング(BGCN-NRWS)を用いたベイジアングラフ畳み込みネットワーク(Bayesian Graph Convolutional Network)を提案する。
BGCN-NRWSは、グラフ構造を利用したマルコフ・チェイン・モンテカルロ(MCMC)に基づくグラフサンプリングアルゴリズムを使用し、変分推論層を用いてオーバーフィッティングを低減し、半教師付きノード分類における最先端と比較して一貫して競合する分類結果を得る。
論文 参考訳(メタデータ) (2021-12-14T20:58:27Z) - CCGG: A Deep Autoregressive Model for Class-Conditional Graph Generation [7.37333913697359]
所望の機能を持つグラフを生成するために,クラス条件付きグラフ生成器(CCGG)を導入する。
CCGGは、様々なデータセット上で既存の条件付きグラフ生成方法より優れている。
また、分散ベースの評価指標の観点から、生成したグラフの品質も維持する。
論文 参考訳(メタデータ) (2021-10-07T21:24:07Z) - Learning Graphon Autoencoders for Generative Graph Modeling [91.32624399902755]
Graphonは任意のサイズでグラフを生成する非パラメトリックモデルであり、グラフから簡単に誘導できる。
解析可能でスケーラブルなグラフ生成モデルを構築するために,textitgraphon autoencoder という新しいフレームワークを提案する。
線形グルーポン分解モデルはデコーダとして機能し、潜在表現を活用して誘導されたグルーポンを再構成する。
論文 参考訳(メタデータ) (2021-05-29T08:11:40Z) - Graph Convolution for Semi-Supervised Classification: Improved Linear
Separability and Out-of-Distribution Generalization [3.308743964406687]
グラフ畳み込みを適用した後にデータを分類することに最も基本的なレベルで依存する新しいクラスの学習モデルが登場しました。
グラフの畳み込みは、データを約1/sqrtD$の係数で線形に分離できる状態を拡張していることを示す。
論文 参考訳(メタデータ) (2021-02-13T17:46:57Z) - Dirichlet Graph Variational Autoencoder [65.94744123832338]
本稿では,グラフクラスタメンバシップを潜在因子とするDGVAE(Dirichlet Graph Variational Autoencoder)を提案する。
バランスグラフカットにおける低パス特性により、入力グラフをクラスタメンバシップにエンコードする、Heattsと呼ばれるGNNの新しい変種を提案する。
論文 参考訳(メタデータ) (2020-10-09T07:35:26Z) - Certified Robustness of Graph Classification against Topology Attack
with Randomized Smoothing [22.16111584447466]
グラフベースの機械学習モデルは、非i.dなグラフデータの性質のため、敵対的な摂動に弱い。
堅牢性を保証するスムーズなグラフ分類モデルを構築した。
グラフ畳み込みネットワーク(GCN)に基づくマルチクラスグラフ分類モデルにおいて,提案手法の有効性を評価する。
論文 参考訳(メタデータ) (2020-09-12T22:18:54Z) - Permutation Invariant Graph Generation via Score-Based Generative
Modeling [114.12935776726606]
本稿では,最近のスコアベース生成モデルを用いて,グラフモデリングにおける置換不変手法を提案する。
特に、入力グラフにおけるデータ分布の勾配をモデル化するために、置換同変のマルチチャネルグラフニューラルネットワークを設計する。
グラフ生成では、我々の学習アプローチはベンチマークデータセット上の既存のモデルよりも良い、あるいは同等の結果を得る。
論文 参考訳(メタデータ) (2020-03-02T03:06:14Z) - Adaptive Graph Auto-Encoder for General Data Clustering [90.8576971748142]
グラフベースのクラスタリングは、クラスタリング領域において重要な役割を果たす。
グラフ畳み込みニューラルネットワークに関する最近の研究は、グラフ型データにおいて驚くべき成功を収めている。
本稿では,グラフの生成的視点に応じて適応的にグラフを構成する汎用データクラスタリングのためのグラフ自動エンコーダを提案する。
論文 参考訳(メタデータ) (2020-02-20T10:11:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。