論文の概要: GraphRCG: Self-Conditioned Graph Generation
- arxiv url: http://arxiv.org/abs/2403.01071v2
- Date: Thu, 18 Jul 2024 06:05:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-19 21:21:41.895986
- Title: GraphRCG: Self-Conditioned Graph Generation
- Title(参考訳): GraphRCG: 自己完結型グラフ生成
- Authors: Song Wang, Zhen Tan, Xinyu Zhao, Tianlong Chen, Huan Liu, Jundong Li,
- Abstract要約: 本稿では,グラフ分布を明示的にモデル化する自己条件付きグラフ生成フレームワークを提案する。
本フレームワークは, 既存のグラフ生成手法に比べて, 学習データに対するグラフ品質と忠実度において優れた性能を示す。
- 参考スコア(独自算出の注目度): 78.69810678803248
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph generation generally aims to create new graphs that closely align with a specific graph distribution. Existing works often implicitly capture this distribution through the optimization of generators, potentially overlooking the intricacies of the distribution itself. Furthermore, these approaches generally neglect the insights offered by the learned distribution for graph generation. In contrast, in this work, we propose a novel self-conditioned graph generation framework designed to explicitly model graph distributions and employ these distributions to guide the generation process. We first perform self-conditioned modeling to capture the graph distributions by transforming each graph sample into a low-dimensional representation and optimizing a representation generator to create new representations reflective of the learned distribution. Subsequently, we leverage these bootstrapped representations as self-conditioned guidance for the generation process, thereby facilitating the generation of graphs that more accurately reflect the learned distributions. We conduct extensive experiments on generic and molecular graph datasets across various fields. Our framework demonstrates superior performance over existing state-of-the-art graph generation methods in terms of graph quality and fidelity to training data.
- Abstract(参考訳): グラフ生成は一般的に、特定のグラフ分布と密接に一致した新しいグラフを作成することを目的としています。
既存の研究はしばしば、この分布を発電機の最適化を通じて暗黙的に捉え、分布自体の複雑さを見落としている可能性がある。
さらに、これらのアプローチは一般に、グラフ生成のための学習分布によって提供される洞察を無視する。
対照的に,本研究では,グラフ分布を明示的にモデル化し,これらの分布を用いて生成過程を導出する,新たな自己条件グラフ生成フレームワークを提案する。
まず、各グラフサンプルを低次元表現に変換し、表現生成器を最適化することにより、学習した分布を反映した新しい表現を生成する。
その後、これらの自己記述表現を生成プロセスの自己条件付きガイダンスとして活用し、学習された分布をより正確に反映したグラフの生成を容易にする。
我々は、様々な分野にわたるジェネリックグラフと分子グラフのデータセットについて広範な実験を行った。
本フレームワークは, 既存のグラフ生成手法に比べて, 学習データに対するグラフ品質と忠実度において優れた性能を示す。
関連論文リスト
- Random Walk Diffusion for Efficient Large-Scale Graph Generation [0.43108040967674194]
本稿では,ARROW-Diff(AutoRegressive RandOm Walk Diffusion)を提案する。
我々は、ARROW-Diffが、生成時間と多重グラフ統計の両方の観点から、他のベースライン手法を超越して、大きなグラフに効率的にスケールできることを実証した。
論文 参考訳(メタデータ) (2024-08-08T13:42:18Z) - Neural Graph Generator: Feature-Conditioned Graph Generation using Latent Diffusion Models [22.794561387716502]
グラフ生成に条件付き潜在拡散モデルを利用する新しい手法であるニューラルグラフ生成器(NGG)を導入する。
NGGは複雑なグラフパターンをモデル化し、グラフ生成プロセスの制御を提供する。
論文 参考訳(メタデータ) (2024-03-03T15:28:47Z) - Overcoming Order in Autoregressive Graph Generation [12.351817671944515]
グラフ生成は、化学やソーシャルネットワークなど、さまざまな領域における基本的な問題である。
近年の研究では、リカレントニューラルネットワーク(RNN)を用いた分子グラフ生成が、従来の生成手法と比較して有利であることが示されている。
論文 参考訳(メタデータ) (2024-02-04T09:58:22Z) - GraphMaker: Can Diffusion Models Generate Large Attributed Graphs? [7.330479039715941]
ノード属性を持つ大規模グラフは、様々な現実世界のアプリケーションでますます一般的になっている。
従来のグラフ生成法は、これらの複雑な構造を扱う能力に制限がある。
本稿では,大きな属性グラフを生成するために特別に設計された新しい拡散モデルであるGraphMakerを紹介する。
論文 参考訳(メタデータ) (2023-10-20T22:12:46Z) - HiGen: Hierarchical Graph Generative Networks [2.3931689873603603]
ほとんどの実世界のグラフは階層構造を示しており、しばしば既存のグラフ生成法で見過ごされる。
本稿では,グラフの階層的な性質を捉え,グラフのサブ構造を粗い方法で連続的に生成するグラフ生成ネットワークを提案する。
このモジュラーアプローチは、大規模で複雑なグラフに対してスケーラブルなグラフ生成を可能にする。
論文 参考訳(メタデータ) (2023-05-30T18:04:12Z) - Spectral Augmentations for Graph Contrastive Learning [50.149996923976836]
コントラスト学習は、監督の有無にかかわらず、表現を学習するための第一の方法として現れてきた。
近年の研究では、グラフ表現学習における事前学習の有用性が示されている。
本稿では,グラフの対照的な目的に対する拡張を構築する際に,候補のバンクを提供するためのグラフ変換操作を提案する。
論文 参考訳(メタデータ) (2023-02-06T16:26:29Z) - Generative Diffusion Models on Graphs: Methods and Applications [50.44334458963234]
拡散モデルは、新しい生成パラダイムとして、様々な画像生成タスクにおいて顕著な成功を収めた。
グラフ生成は多くの実世界のアプリケーションを持つグラフ上で重要な計算タスクである。
論文 参考訳(メタデータ) (2023-02-06T06:58:17Z) - Graph Condensation via Receptive Field Distribution Matching [61.71711656856704]
本稿では,元のグラフを表す小さなグラフの作成に焦点をあてる。
我々は、元のグラフを受容体の分布とみなし、受容体が同様の分布を持つ小さなグラフを合成することを目的としている。
論文 参考訳(メタデータ) (2022-06-28T02:10:05Z) - Score-based Generative Modeling of Graphs via the System of Stochastic
Differential Equations [57.15855198512551]
本稿では,連続時間フレームワークを用いたグラフのスコアベース生成モデルを提案する。
本手法は, トレーニング分布に近い分子を生成できるが, 化学価数則に違反しないことを示す。
論文 参考訳(メタデータ) (2022-02-05T08:21:04Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
本稿では,AGE という逆グラフ埋め込みのための頑健なフレームワークを提案する。
AGEは、暗黙の分布から強化された負のサンプルとして偽の隣接ノードを生成する。
本フレームワークでは,3種類のグラフデータを扱う3つのモデルを提案する。
論文 参考訳(メタデータ) (2021-05-22T07:05:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。