Individual Fairness under Uncertainty
- URL: http://arxiv.org/abs/2302.08015v2
- Date: Mon, 11 Dec 2023 18:07:09 GMT
- Title: Individual Fairness under Uncertainty
- Authors: Wenbin Zhang, Zichong Wang, Juyong Kim, Cheng Cheng, Thomas Oommen,
Pradeep Ravikumar, and Jeremy Weiss
- Abstract summary: Algorithmic fairness is an established area in machine learning (ML) algorithms.
We propose an individual fairness measure and a corresponding algorithm that deal with the challenges of uncertainty arising from censorship in class labels.
We argue that this perspective represents a more realistic model of fairness research for real-world application deployment.
- Score: 26.183244654397477
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Algorithmic fairness, the research field of making machine learning (ML)
algorithms fair, is an established area in ML. As ML technologies expand their
application domains, including ones with high societal impact, it becomes
essential to take fairness into consideration during the building of ML
systems. Yet, despite its wide range of socially sensitive applications, most
work treats the issue of algorithmic bias as an intrinsic property of
supervised learning, i.e., the class label is given as a precondition. Unlike
prior studies in fairness, we propose an individual fairness measure and a
corresponding algorithm that deal with the challenges of uncertainty arising
from censorship in class labels, while enforcing similar individuals to be
treated similarly from a ranking perspective, free of the Lipschitz condition
in the conventional individual fairness definition. We argue that this
perspective represents a more realistic model of fairness research for
real-world application deployment and show how learning with such a relaxed
precondition draws new insights that better explains algorithmic fairness. We
conducted experiments on four real-world datasets to evaluate our proposed
method compared to other fairness models, demonstrating its superiority in
minimizing discrimination while maintaining predictive performance with
uncertainty present.
Related papers
- Fairness Evaluation with Item Response Theory [10.871079276188649]
This paper proposes a novel Fair-IRT framework to evaluate fairness in Machine Learning (ML) models.
Detailed explanations for item characteristic curves (ICCs) are provided for particular individuals.
Experiments demonstrate the effectiveness of this framework as a fairness evaluation tool.
arXiv Detail & Related papers (2024-10-20T22:25:20Z) - Learning for Counterfactual Fairness from Observational Data [62.43249746968616]
Fairness-aware machine learning aims to eliminate biases of learning models against certain subgroups described by certain protected (sensitive) attributes such as race, gender, and age.
A prerequisite for existing methods to achieve counterfactual fairness is the prior human knowledge of the causal model for the data.
In this work, we address the problem of counterfactually fair prediction from observational data without given causal models by proposing a novel framework CLAIRE.
arXiv Detail & Related papers (2023-07-17T04:08:29Z) - Fairness in Matching under Uncertainty [78.39459690570531]
algorithmic two-sided marketplaces have drawn attention to the issue of fairness in such settings.
We axiomatize a notion of individual fairness in the two-sided marketplace setting which respects the uncertainty in the merits.
We design a linear programming framework to find fair utility-maximizing distributions over allocations.
arXiv Detail & Related papers (2023-02-08T00:30:32Z) - Practical Approaches for Fair Learning with Multitype and Multivariate
Sensitive Attributes [70.6326967720747]
It is important to guarantee that machine learning algorithms deployed in the real world do not result in unfairness or unintended social consequences.
We introduce FairCOCCO, a fairness measure built on cross-covariance operators on reproducing kernel Hilbert Spaces.
We empirically demonstrate consistent improvements against state-of-the-art techniques in balancing predictive power and fairness on real-world datasets.
arXiv Detail & Related papers (2022-11-11T11:28:46Z) - Fair Inference for Discrete Latent Variable Models [12.558187319452657]
Machine learning models, trained on data without due care, often exhibit unfair and discriminatory behavior against certain populations.
We develop a fair variational inference technique for the discrete latent variables, which is accomplished by including a fairness penalty on the variational distribution.
To demonstrate the generality of our approach and its potential for real-world impact, we then develop a special-purpose graphical model for criminal justice risk assessments.
arXiv Detail & Related papers (2022-09-15T04:54:21Z) - Understanding Unfairness in Fraud Detection through Model and Data Bias
Interactions [4.159343412286401]
We argue that algorithmic unfairness stems from interactions between models and biases in the data.
We study a set of hypotheses regarding the fairness-accuracy trade-offs that fairness-blind ML algorithms exhibit under different data bias settings.
arXiv Detail & Related papers (2022-07-13T15:18:30Z) - MultiFair: Multi-Group Fairness in Machine Learning [52.24956510371455]
We study multi-group fairness in machine learning (MultiFair)
We propose a generic end-to-end algorithmic framework to solve it.
Our proposed framework is generalizable to many different settings.
arXiv Detail & Related papers (2021-05-24T02:30:22Z) - Can Active Learning Preemptively Mitigate Fairness Issues? [66.84854430781097]
dataset bias is one of the prevailing causes of unfairness in machine learning.
We study whether models trained with uncertainty-based ALs are fairer in their decisions with respect to a protected class.
We also explore the interaction of algorithmic fairness methods such as gradient reversal (GRAD) and BALD.
arXiv Detail & Related papers (2021-04-14T14:20:22Z) - All of the Fairness for Edge Prediction with Optimal Transport [11.51786288978429]
We study the problem of fairness for the task of edge prediction in graphs.
We propose an embedding-agnostic repairing procedure for the adjacency matrix of an arbitrary graph with a trade-off between the group and individual fairness.
arXiv Detail & Related papers (2020-10-30T15:33:13Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
We consider fairness in the integration component of data management.
We propose an approach to identify a sub-collection of features that ensure the fairness of the dataset.
arXiv Detail & Related papers (2020-06-10T20:20:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.