Fair Inference for Discrete Latent Variable Models
- URL: http://arxiv.org/abs/2209.07044v1
- Date: Thu, 15 Sep 2022 04:54:21 GMT
- Title: Fair Inference for Discrete Latent Variable Models
- Authors: Rashidul Islam, Shimei Pan and James R. Foulds
- Abstract summary: Machine learning models, trained on data without due care, often exhibit unfair and discriminatory behavior against certain populations.
We develop a fair variational inference technique for the discrete latent variables, which is accomplished by including a fairness penalty on the variational distribution.
To demonstrate the generality of our approach and its potential for real-world impact, we then develop a special-purpose graphical model for criminal justice risk assessments.
- Score: 12.558187319452657
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It is now well understood that machine learning models, trained on data
without due care, often exhibit unfair and discriminatory behavior against
certain populations. Traditional algorithmic fairness research has mainly
focused on supervised learning tasks, particularly classification. While
fairness in unsupervised learning has received some attention, the literature
has primarily addressed fair representation learning of continuous embeddings.
In this paper, we conversely focus on unsupervised learning using probabilistic
graphical models with discrete latent variables. We develop a fair stochastic
variational inference technique for the discrete latent variables, which is
accomplished by including a fairness penalty on the variational distribution
that aims to respect the principles of intersectionality, a critical lens on
fairness from the legal, social science, and humanities literature, and then
optimizing the variational parameters under this penalty. We first show the
utility of our method in improving equity and fairness for clustering using
na\"ive Bayes and Gaussian mixture models on benchmark datasets. To demonstrate
the generality of our approach and its potential for real-world impact, we then
develop a special-purpose graphical model for criminal justice risk
assessments, and use our fairness approach to prevent the inferences from
encoding unfair societal biases.
Related papers
- Enhancing Fairness in Neural Networks Using FairVIC [0.0]
Mitigating bias in automated decision-making systems, specifically deep learning models, is a critical challenge in achieving fairness.
We introduce FairVIC, an innovative approach designed to enhance fairness in neural networks by addressing inherent biases at the training stage.
We observe a significant improvement in fairness across all metrics tested, without compromising the model's accuracy to a detrimental extent.
arXiv Detail & Related papers (2024-04-28T10:10:21Z) - Learning for Counterfactual Fairness from Observational Data [62.43249746968616]
Fairness-aware machine learning aims to eliminate biases of learning models against certain subgroups described by certain protected (sensitive) attributes such as race, gender, and age.
A prerequisite for existing methods to achieve counterfactual fairness is the prior human knowledge of the causal model for the data.
In this work, we address the problem of counterfactually fair prediction from observational data without given causal models by proposing a novel framework CLAIRE.
arXiv Detail & Related papers (2023-07-17T04:08:29Z) - DualFair: Fair Representation Learning at Both Group and Individual
Levels via Contrastive Self-supervision [73.80009454050858]
This work presents a self-supervised model, called DualFair, that can debias sensitive attributes like gender and race from learned representations.
Our model jointly optimize for two fairness criteria - group fairness and counterfactual fairness.
arXiv Detail & Related papers (2023-03-15T07:13:54Z) - Fairness in Matching under Uncertainty [78.39459690570531]
algorithmic two-sided marketplaces have drawn attention to the issue of fairness in such settings.
We axiomatize a notion of individual fairness in the two-sided marketplace setting which respects the uncertainty in the merits.
We design a linear programming framework to find fair utility-maximizing distributions over allocations.
arXiv Detail & Related papers (2023-02-08T00:30:32Z) - Towards Equal Opportunity Fairness through Adversarial Learning [64.45845091719002]
Adversarial training is a common approach for bias mitigation in natural language processing.
We propose an augmented discriminator for adversarial training, which takes the target class as input to create richer features.
arXiv Detail & Related papers (2022-03-12T02:22:58Z) - Measuring Fairness Under Unawareness of Sensitive Attributes: A
Quantification-Based Approach [131.20444904674494]
We tackle the problem of measuring group fairness under unawareness of sensitive attributes.
We show that quantification approaches are particularly suited to tackle the fairness-under-unawareness problem.
arXiv Detail & Related papers (2021-09-17T13:45:46Z) - All of the Fairness for Edge Prediction with Optimal Transport [11.51786288978429]
We study the problem of fairness for the task of edge prediction in graphs.
We propose an embedding-agnostic repairing procedure for the adjacency matrix of an arbitrary graph with a trade-off between the group and individual fairness.
arXiv Detail & Related papers (2020-10-30T15:33:13Z) - Fairness in Semi-supervised Learning: Unlabeled Data Help to Reduce
Discrimination [53.3082498402884]
A growing specter in the rise of machine learning is whether the decisions made by machine learning models are fair.
We present a framework of fair semi-supervised learning in the pre-processing phase, including pseudo labeling to predict labels for unlabeled data.
A theoretical decomposition analysis of bias, variance and noise highlights the different sources of discrimination and the impact they have on fairness in semi-supervised learning.
arXiv Detail & Related papers (2020-09-25T05:48:56Z) - Adversarial Learning for Counterfactual Fairness [15.302633901803526]
In recent years, fairness has become an important topic in the machine learning research community.
We propose to rely on an adversarial neural learning approach, that enables more powerful inference than with MMD penalties.
Experiments show significant improvements in term of counterfactual fairness for both the discrete and the continuous settings.
arXiv Detail & Related papers (2020-08-30T09:06:03Z) - Fairness by Explicability and Adversarial SHAP Learning [0.0]
We propose a new definition of fairness that emphasises the role of an external auditor and model explicability.
We develop a framework for mitigating model bias using regularizations constructed from the SHAP values of an adversarial surrogate model.
We demonstrate our approaches using gradient and adaptive boosting on: a synthetic dataset, the UCI Adult (Census) dataset and a real-world credit scoring dataset.
arXiv Detail & Related papers (2020-03-11T14:36:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.