論文の概要: Local Causal Discovery for Estimating Causal Effects
- arxiv url: http://arxiv.org/abs/2302.08070v1
- Date: Thu, 16 Feb 2023 04:12:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-17 15:01:59.070219
- Title: Local Causal Discovery for Estimating Causal Effects
- Title(参考訳): 因果効果推定のための局所因果発見
- Authors: Shantanu Gupta, David Childers, Zachary C. Lipton
- Abstract要約: Eager Collider Checks (LDECC) を用いた局所発見
Eager Collider Checks (LDECC) を用いたローカルディスカバリの導入
LDECCと既存のアルゴリズムは、異なる忠実性の仮定に依存しており、この洞察を活用して、可能なATE値の集合を特定するための仮定を弱める。
- 参考スコア(独自算出の注目度): 25.338901482522648
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Even when the causal graph underlying our data is unknown, we can use
observational data to narrow down the possible values that an average treatment
effect (ATE) can take by (1) identifying the graph up to a Markov equivalence
class; and (2) estimating that ATE for each graph in the class. While the PC
algorithm can identify this class under strong faithfulness assumptions, it can
be computationally prohibitive. Fortunately, only the local graph structure
around the treatment is required to identify the set of possible ATE values, a
fact exploited by local discovery algorithms to improve computational
efficiency. In this paper, we introduce Local Discovery using Eager Collider
Checks (LDECC), a new local causal discovery algorithm that leverages
unshielded colliders to orient the treatment's parents differently from
existing methods. We show that there exist graphs where LDECC exponentially
outperforms existing local discovery algorithms and vice versa. Moreover, we
show that LDECC and existing algorithms rely on different faithfulness
assumptions, leveraging this insight to weaken the assumptions for identifying
the set of possible ATE values.
- Abstract(参考訳): 我々のデータに基づく因果グラフが未知であっても、平均処理効果(ATE)が得る可能性のある値を、(1)マルコフ同値クラスまで同定し、(2)クラス内の各グラフに対してATEを推定することで、観測データを用いて絞り込むことができる。
PCアルゴリズムは強い忠実性の仮定の下でこのクラスを識別できるが、計算的に禁止することができる。
幸いなことに、処理の周りの局所グラフ構造のみが、可能なate値のセットを特定するために必要であり、これは計算効率を改善するために局所探索アルゴリズムによって利用される。
本稿では,従来の方法と異なり,非シールド型衝突器を利用した局所因果探索アルゴリズムであるEager Collider Checks (LDECC) を用いた局所発見について紹介する。
LDECCが既存の局所探索アルゴリズムを指数関数的に上回るグラフが存在することを示す。
さらに, LDECC と既存のアルゴリズムは異なる信頼度仮定に依存しており, この知見を活用して ATE 値の集合を同定する仮定を弱めていることを示す。
関連論文リスト
- A Full DAG Score-Based Algorithm for Learning Causal Bayesian Networks with Latent Confounders [0.0]
因果ベイズネットワーク(Causal Bayesian Network, CBN)は、変数間の因果関係を符号化する一般的なグラフィカル確率モデルである。
本稿では,DAGの空間を探索し,潜在する共同設立者の存在を識別できる,初めての完全スコアに基づく構造学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-08-20T20:25:56Z) - Predictive Coding beyond Correlations [59.47245250412873]
このようなアルゴリズムのうちの1つは、予測符号化と呼ばれ、因果推論タスクを実行することができるかを示す。
まず、予測符号化の推論過程における簡単な変化が、因果グラフを再利用したり再定義したりすることなく、介入を計算できることを示す。
論文 参考訳(メタデータ) (2023-06-27T13:57:16Z) - Learning to Bound Counterfactual Inference in Structural Causal Models
from Observational and Randomised Data [64.96984404868411]
我々は、従来のEMベースのアルゴリズムを拡張するための全体的なデータの特徴付けを導出する。
新しいアルゴリズムは、そのような混合データソースからモデルパラメータの(不特定性)領域を近似することを学ぶ。
反実的な結果に間隔近似を与え、それが特定可能な場合の点に崩壊する。
論文 参考訳(メタデータ) (2022-12-06T12:42:11Z) - Score matching enables causal discovery of nonlinear additive noise
models [63.93669924730725]
次世代のスケーラブル因果発見手法の設計方法について述べる。
本稿では,スコアのヤコビアンを効率的に近似し,因果グラフを復元する手法を提案する。
論文 参考訳(メタデータ) (2022-03-08T21:34:46Z) - Riemannian classification of EEG signals with missing values [67.90148548467762]
本稿では脳波の分類に欠落したデータを扱うための2つの方法を提案する。
第1のアプローチでは、インプットされたデータと$k$-nearestの隣人アルゴリズムとの共分散を推定し、第2のアプローチでは、期待最大化アルゴリズム内で観測データの可能性を活用することにより、観測データに依存する。
その結果, 提案手法は観測データに基づく分類よりも優れており, 欠落したデータ比が増大しても高い精度を維持することができることがわかった。
論文 参考訳(メタデータ) (2021-10-19T14:24:50Z) - Improving Efficiency and Accuracy of Causal Discovery Using a
Hierarchical Wrapper [7.570246812206772]
観測データからの因果発見は、科学の多くの分野において重要なツールである。
大規模なサンプルリミットでは、音と完全な因果探索アルゴリズムが導入されている。
しかし、これらのアルゴリズムが使用する統計的テストのパワーを制限するのは、有限のトレーニングデータのみである。
論文 参考訳(メタデータ) (2021-07-11T09:24:49Z) - A Local Method for Identifying Causal Relations under Markov Equivalence [7.904790547594697]
因果関係は、人工知能研究における解釈可能で堅牢な手法を設計する上で重要である。
有向非周期グラフ(DAG)の因果的グラフィカルモデルに基づく変数が与えられたターゲットの原因であるか否かを局所的に特定する手法を提案する。
論文 参考訳(メタデータ) (2021-02-25T05:01:44Z) - Causal Discovery from Incomplete Data using An Encoder and Reinforcement
Learning [2.4469484645516837]
新たなエンコーダと強化学習(RL)を用いて不完全データから因果構造を発見する手法を提案する。
エンコーダは、データ計算の欠如と特徴抽出のために設計されている。
本手法は不完全な観測データを入力として、因果構造グラフを生成する。
論文 参考訳(メタデータ) (2020-06-09T23:33:47Z) - FedPD: A Federated Learning Framework with Optimal Rates and Adaptivity
to Non-IID Data [59.50904660420082]
フェデレートラーニング(FL)は、分散データから学ぶための一般的なパラダイムになっています。
クラウドに移行することなく、さまざまなデバイスのデータを効果的に活用するために、Federated Averaging(FedAvg)などのアルゴリズムでは、"Computation then aggregate"(CTA)モデルを採用している。
論文 参考訳(メタデータ) (2020-05-22T23:07:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。