論文の概要: Improving Efficiency and Accuracy of Causal Discovery Using a
Hierarchical Wrapper
- arxiv url: http://arxiv.org/abs/2107.05001v1
- Date: Sun, 11 Jul 2021 09:24:49 GMT
- ステータス: 処理完了
- システム内更新日: 2021-07-13 16:23:27.142290
- Title: Improving Efficiency and Accuracy of Causal Discovery Using a
Hierarchical Wrapper
- Title(参考訳): 階層ラッパーを用いた因果発見の効率と精度の向上
- Authors: Shami Nisimov, Yaniv Gurwicz, Raanan Y. Rohekar, Gal Novik
- Abstract要約: 観測データからの因果発見は、科学の多くの分野において重要なツールである。
大規模なサンプルリミットでは、音と完全な因果探索アルゴリズムが導入されている。
しかし、これらのアルゴリズムが使用する統計的テストのパワーを制限するのは、有限のトレーニングデータのみである。
- 参考スコア(独自算出の注目度): 7.570246812206772
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Causal discovery from observational data is an important tool in many
branches of science. Under certain assumptions it allows scientists to explain
phenomena, predict, and make decisions. In the large sample limit, sound and
complete causal discovery algorithms have been previously introduced, where a
directed acyclic graph (DAG), or its equivalence class, representing causal
relations is searched. However, in real-world cases, only finite training data
is available, which limits the power of statistical tests used by these
algorithms, leading to errors in the inferred causal model. This is commonly
addressed by devising a strategy for using as few as possible statistical
tests. In this paper, we introduce such a strategy in the form of a recursive
wrapper for existing constraint-based causal discovery algorithms, which
preserves soundness and completeness. It recursively clusters the observed
variables using the normalized min-cut criterion from the outset, and uses a
baseline causal discovery algorithm during backtracking for learning local
sub-graphs. It then combines them and ensures completeness. By an ablation
study, using synthetic data, and by common real-world benchmarks, we
demonstrate that our approach requires significantly fewer statistical tests,
learns more accurate graphs, and requires shorter run-times than the baseline
algorithm.
- Abstract(参考訳): 観測データからの因果発見は多くの科学分野において重要なツールである。
特定の仮定の下では、科学者は現象を説明し、予測し、決定することができる。
大規模なサンプルリミットでは、音響および完全因果探索アルゴリズムが導入されており、因果関係を表す有向非巡回グラフ(DAG)またはその等価クラスが探索されている。
しかし、現実のケースでは、有限のトレーニングデータしか利用できないため、これらのアルゴリズムが使用する統計的テストのパワーが制限され、推論因果モデルの誤差が生じる。
これは、可能な限り統計テストを使用する戦略を考案することによって、一般的に対処される。
本稿では,既存の制約に基づく因果発見アルゴリズムのための再帰的ラッパーとして,健全性と完全性を保持する戦略を提案する。
初期から正規化されたminカット基準を用いて観測変数を再帰的にクラスタリングし、バックトラック中にベースライン因果探索アルゴリズムを用いて局所的な部分グラフを学習する。
そしてそれらを組み合わせ、完全性を保証する。
Ablation study, using synthetic data, by common real-world benchmarks, we demonstrate that our approach requires significantly less statistics test, learns more accurate graphs, and requires short run-times than the baseline algorithm。
関連論文リスト
- Sample Efficient Bayesian Learning of Causal Graphs from Interventions [6.823521786512908]
本研究では,限られた介入サンプルを用いた因果グラフ学習におけるベイズ的アプローチについて考察する。
我々は,提案アルゴリズムが真の因果グラフを高い確率で返すことを理論的に示す。
本稿では,このアルゴリズムを,グラフ全体を学習することなく,より一般的な因果問題にどう対応できるかを示すケーススタディを提案する。
論文 参考訳(メタデータ) (2024-10-26T05:47:56Z) - Improving Finite Sample Performance of Causal Discovery by Exploiting Temporal Structure [0.0]
因果発見の方法は、データ駆動方式で因果構造を特定することを目的としている。
既存のアルゴリズムは不安定で統計的誤差に敏感であることが知られている。
本稿では,時間的構造,いわゆる階層的背景知識を利用するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-06-27T19:36:26Z) - Adaptive Online Experimental Design for Causal Discovery [9.447864414136905]
因果発見は因果グラフに符号化された因果関係を明らかにすることを目的としている。
オンライン学習の観点から,データの介入効率に着目し,因果発見を形式化する。
グラフ分離システムから介入を適応的に選択するトラック・アンド・ストップ因果探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-05-19T13:26:33Z) - Sample, estimate, aggregate: A recipe for causal discovery foundation models [28.116832159265964]
我々は、古典因果探索アルゴリズムの出力からより大きな因果グラフを予測することを学ぶ教師付きモデルを訓練する。
我々のアプローチは、古典的手法の出力における典型的なエラーがデータセット間で比較できるという観察によって実現されている。
実データおよび合成データに関する実験では、このモデルが不特定性や分布シフトに直面して高い精度を維持することを示した。
論文 参考訳(メタデータ) (2024-02-02T21:57:58Z) - Predictive Coding beyond Correlations [59.47245250412873]
このようなアルゴリズムのうちの1つは、予測符号化と呼ばれ、因果推論タスクを実行することができるかを示す。
まず、予測符号化の推論過程における簡単な変化が、因果グラフを再利用したり再定義したりすることなく、介入を計算できることを示す。
論文 参考訳(メタデータ) (2023-06-27T13:57:16Z) - New metrics and search algorithms for weighted causal DAGs [7.424262881242935]
ノード依存コストの適応的介入による因果グラフ発見について検討する。
検索アルゴリズムの最悪の介入コストをキャプチャする新しいベンチマークを定義する。
本研究では,様々な条件下で対数近似を実現する適応探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-05-08T03:48:37Z) - Learning to Bound Counterfactual Inference in Structural Causal Models
from Observational and Randomised Data [64.96984404868411]
我々は、従来のEMベースのアルゴリズムを拡張するための全体的なデータの特徴付けを導出する。
新しいアルゴリズムは、そのような混合データソースからモデルパラメータの(不特定性)領域を近似することを学ぶ。
反実的な結果に間隔近似を与え、それが特定可能な場合の点に崩壊する。
論文 参考訳(メタデータ) (2022-12-06T12:42:11Z) - Benchmarking Node Outlier Detection on Graphs [90.29966986023403]
グラフの外れ値検出は、多くのアプリケーションにおいて、新しいが重要な機械学習タスクである。
UNODと呼ばれるグラフに対して、最初の包括的教師なしノード外乱検出ベンチマークを示す。
論文 参考訳(メタデータ) (2022-06-21T01:46:38Z) - Amortized Inference for Causal Structure Learning [72.84105256353801]
因果構造を学習することは、通常、スコアまたは独立テストを使用して構造を評価することを伴う探索問題を引き起こす。
本研究では,観測・干渉データから因果構造を予測するため,変分推論モデルを訓練する。
我々のモデルは、実質的な分布シフトの下で頑健な一般化能力を示す。
論文 参考訳(メタデータ) (2022-05-25T17:37:08Z) - CASTLE: Regularization via Auxiliary Causal Graph Discovery [89.74800176981842]
因果構造学習(CASTLE)の正規化を導入し,変数間の因果関係を共同学習することでニューラルネットワークの正規化を提案する。
CASTLEは因果的隣り合いを持つ因果的DAGの特徴のみを効率的に再構成する一方、再構成ベース正規化器は全ての入力特徴を過度に再構成する。
論文 参考訳(メタデータ) (2020-09-28T09:49:38Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
補間分類器間のテストエラーの完全な分布を正確に計算する手法を開発した。
テストエラーは、最悪の補間モデルのテストエラーから大きく逸脱する、小さな典型的な$varepsilon*$に集中する傾向にある。
以上の結果から,統計的学習理論における通常の解析手法は,実際に観測された優れた一般化性能を捉えるのに十分な粒度にはならない可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-22T21:12:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。