Local Causal Discovery for Estimating Causal Effects
- URL: http://arxiv.org/abs/2302.08070v4
- Date: Wed, 10 Apr 2024 16:22:16 GMT
- Title: Local Causal Discovery for Estimating Causal Effects
- Authors: Shantanu Gupta, David Childers, Zachary C. Lipton,
- Abstract summary: Local Discovery using Eager Collider Checks (LDECC)
We introduce Local Discovery using Eager Collider Checks (LDECC)
We show that LDECC and existing algorithms rely on different faithfulness assumptions, leveraging this insight to weaken the assumptions for identifying the set of possible ATE values.
- Score: 41.49486724979923
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Even when the causal graph underlying our data is unknown, we can use observational data to narrow down the possible values that an average treatment effect (ATE) can take by (1) identifying the graph up to a Markov equivalence class; and (2) estimating that ATE for each graph in the class. While the PC algorithm can identify this class under strong faithfulness assumptions, it can be computationally prohibitive. Fortunately, only the local graph structure around the treatment is required to identify the set of possible ATE values, a fact exploited by local discovery algorithms to improve computational efficiency. In this paper, we introduce Local Discovery using Eager Collider Checks (LDECC), a new local causal discovery algorithm that leverages unshielded colliders to orient the treatment's parents differently from existing methods. We show that there exist graphs where LDECC exponentially outperforms existing local discovery algorithms and vice versa. Moreover, we show that LDECC and existing algorithms rely on different faithfulness assumptions, leveraging this insight to weaken the assumptions for identifying the set of possible ATE values.
Related papers
- An Efficient Outlier Detection Algorithm for Data Streaming [51.56874851156008]
Traditional outlier detection methods, such as the Local Outlier Factor (LOF) algorithm, struggle with real-time data.
We propose a novel approach to enhance the efficiency of LOF algorithms for online anomaly detection, named the Efficient Incremental LOF (EILOF) algorithm.
The EILOF algorithm not only significantly reduces computational costs, but also systematically improves detection accuracy when the number of additional points increases.
arXiv Detail & Related papers (2025-01-02T05:12:43Z) - A Full DAG Score-Based Algorithm for Learning Causal Bayesian Networks with Latent Confounders [0.0]
Causal Bayesian networks (CBN) are popular graphical probabilistic models that encode causal relations among variables.
This paper introduces the first fully score-based structure learning algorithm searching the space of DAGs that is capable of identifying the presence of some latent confounders.
arXiv Detail & Related papers (2024-08-20T20:25:56Z) - Learning to Bound Counterfactual Inference in Structural Causal Models
from Observational and Randomised Data [64.96984404868411]
We derive a likelihood characterisation for the overall data that leads us to extend a previous EM-based algorithm.
The new algorithm learns to approximate the (unidentifiability) region of model parameters from such mixed data sources.
It delivers interval approximations to counterfactual results, which collapse to points in the identifiable case.
arXiv Detail & Related papers (2022-12-06T12:42:11Z) - Score matching enables causal discovery of nonlinear additive noise
models [63.93669924730725]
We show how to design a new generation of scalable causal discovery methods.
We propose a new efficient method for approximating the score's Jacobian, enabling to recover the causal graph.
arXiv Detail & Related papers (2022-03-08T21:34:46Z) - Riemannian classification of EEG signals with missing values [67.90148548467762]
This paper proposes two strategies to handle missing data for the classification of electroencephalograms.
The first approach estimates the covariance from imputed data with the $k$-nearest neighbors algorithm; the second relies on the observed data by leveraging the observed-data likelihood within an expectation-maximization algorithm.
As results show, the proposed strategies perform better than the classification based on observed data and allow to keep a high accuracy even when the missing data ratio increases.
arXiv Detail & Related papers (2021-10-19T14:24:50Z) - Improving Efficiency and Accuracy of Causal Discovery Using a
Hierarchical Wrapper [7.570246812206772]
Causal discovery from observational data is an important tool in many branches of science.
In the large sample limit, sound and complete causal discovery algorithms have been previously introduced.
However, only finite training data is available, which limits the power of statistical tests used by these algorithms.
arXiv Detail & Related papers (2021-07-11T09:24:49Z) - A Local Method for Identifying Causal Relations under Markov Equivalence [7.904790547594697]
Causality is important for designing interpretable and robust methods in artificial intelligence research.
We propose a local approach to identify whether a variable is a cause of a given target based on causal graphical models of directed acyclic graphs (DAGs)
arXiv Detail & Related papers (2021-02-25T05:01:44Z) - Causal Discovery from Incomplete Data using An Encoder and Reinforcement
Learning [2.4469484645516837]
We propose an approach to discover causal structures from incomplete data by using a novel encoder and reinforcement learning (RL)
The encoder is designed for missing data imputation as well as feature extraction.
Our method takes the incomplete observational data as input and generates a causal structure graph.
arXiv Detail & Related papers (2020-06-09T23:33:47Z) - FedPD: A Federated Learning Framework with Optimal Rates and Adaptivity
to Non-IID Data [59.50904660420082]
Federated Learning (FL) has become a popular paradigm for learning from distributed data.
To effectively utilize data at different devices without moving them to the cloud, algorithms such as the Federated Averaging (FedAvg) have adopted a "computation then aggregation" (CTA) model.
arXiv Detail & Related papers (2020-05-22T23:07:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.