Machine-Learned Closure of URANS for Stably Stratified Turbulence: Connecting Physical Timescales & Data Hyperparameters of Deep Time-Series Models
- URL: http://arxiv.org/abs/2404.16141v1
- Date: Wed, 24 Apr 2024 18:58:00 GMT
- Title: Machine-Learned Closure of URANS for Stably Stratified Turbulence: Connecting Physical Timescales & Data Hyperparameters of Deep Time-Series Models
- Authors: Muralikrishnan Gopalakrishnan Meena, Demetri Liousas, Andrew D. Simin, Aditya Kashi, Wesley H. Brewer, James J. Riley, Stephen M. de Bruyn Kops,
- Abstract summary: We develop time-series machine learning (ML) methods for closure modeling of the Unsteady Reynolds Averaged Navier Stokes equations.
We consider decaying SST which are homogeneous and stably stratified by a uniform density gradient.
We find that the ratio of the timescales of the minimum information required by the ML models to accurately capture the dynamics of the SST corresponds to the Reynolds number of the flow.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We develop time-series machine learning (ML) methods for closure modeling of the Unsteady Reynolds Averaged Navier Stokes (URANS) equations applied to stably stratified turbulence (SST). SST is strongly affected by fine balances between forces and becomes more anisotropic in time for decaying cases. Moreover, there is a limited understanding of the physical phenomena described by some of the terms in the URANS equations. Rather than attempting to model each term separately, it is attractive to explore the capability of machine learning to model groups of terms, i.e., to directly model the force balances. We consider decaying SST which are homogeneous and stably stratified by a uniform density gradient, enabling dimensionality reduction. We consider two time-series ML models: Long Short-Term Memory (LSTM) and Neural Ordinary Differential Equation (NODE). Both models perform accurately and are numerically stable in a posteriori tests. Furthermore, we explore the data requirements of the ML models by extracting physically relevant timescales of the complex system. We find that the ratio of the timescales of the minimum information required by the ML models to accurately capture the dynamics of the SST corresponds to the Reynolds number of the flow. The current framework provides the backbone to explore the capability of such models to capture the dynamics of higher-dimensional complex SST flows.
Related papers
- Trajectory Flow Matching with Applications to Clinical Time Series Modeling [77.58277281319253]
Trajectory Flow Matching (TFM) trains a Neural SDE in a simulation-free manner, bypassing backpropagation through the dynamics.
We demonstrate improved performance on three clinical time series datasets in terms of absolute performance and uncertainty prediction.
arXiv Detail & Related papers (2024-10-28T15:54:50Z) - Latent Space Energy-based Neural ODEs [73.01344439786524]
This paper introduces a novel family of deep dynamical models designed to represent continuous-time sequence data.
We train the model using maximum likelihood estimation with Markov chain Monte Carlo.
Experiments on oscillating systems, videos and real-world state sequences (MuJoCo) illustrate that ODEs with the learnable energy-based prior outperform existing counterparts.
arXiv Detail & Related papers (2024-09-05T18:14:22Z) - Generalization capabilities and robustness of hybrid machine learning models grounded in flow physics compared to purely deep learning models [2.8686437689115363]
This study investigates the generalization capabilities and robustness of purely deep learning (DL) models and hybrid models based on physical principles in fluid dynamics applications.
Three autoregressive models were compared: a convolutional autoencoder combined with a convolutional LSTM, a variational autoencoder (VAE) combined with a ConvLSTM and a hybrid model that combines proper decomposition (POD) with a LSTM (POD-DL)
While the VAE and ConvLSTM models accurately predicted laminar flow, the hybrid POD-DL model outperformed the others across both laminar and turbulent flow regimes.
arXiv Detail & Related papers (2024-04-27T12:43:02Z) - Convolutional State Space Models for Long-Range Spatiotemporal Modeling [65.0993000439043]
ConvS5 is an efficient variant for long-rangetemporal modeling.
It significantly outperforms Transformers and ConvNISTTM on a long horizon Moving-Lab experiment while training 3X faster than ConvLSTM and generating samples 400X faster than Transformers.
arXiv Detail & Related papers (2023-10-30T16:11:06Z) - A Neural PDE Solver with Temporal Stencil Modeling [44.97241931708181]
Recent Machine Learning (ML) models have shown new promises in capturing important dynamics in high-resolution signals.
This study shows that significant information is often lost in the low-resolution down-sampled features.
We propose a new approach, which combines the strengths of advanced time-series sequence modeling and state-of-the-art neural PDE solvers.
arXiv Detail & Related papers (2023-02-16T06:13:01Z) - Deep Latent State Space Models for Time-Series Generation [68.45746489575032]
We propose LS4, a generative model for sequences with latent variables evolving according to a state space ODE.
Inspired by recent deep state space models (S4), we achieve speedups by leveraging a convolutional representation of LS4.
We show that LS4 significantly outperforms previous continuous-time generative models in terms of marginal distribution, classification, and prediction scores on real-world datasets.
arXiv Detail & Related papers (2022-12-24T15:17:42Z) - Discovering Dynamic Patterns from Spatiotemporal Data with Time-Varying
Low-Rank Autoregression [12.923271427789267]
We develop a time-reduced-rank vector autoregression model whose coefficient are parameterized by low-rank tensor factorization.
In the temporal context, the complex time-varying system behaviors can be revealed by the temporal modes in the proposed model.
arXiv Detail & Related papers (2022-11-28T15:59:52Z) - Data-driven low-dimensional dynamic model of Kolmogorov flow [0.0]
Reduced order models (ROMs) that capture flow dynamics are of interest for decreasing computational costs for simulation.
This work presents a data-driven framework for minimal-dimensional models that effectively capture the dynamics and properties of the flow.
We apply this to Kolmogorov flow in a regime consisting of chaotic and intermittent behavior.
arXiv Detail & Related papers (2022-10-29T23:05:39Z) - Deep Learning Closure Models for Large-Eddy Simulation of Flows around
Bluff Bodies [0.0]
deep learning model for large-eddy simulation (LES) is developed and evaluated for incompressible flows around a rectangular cylinder at moderate Reynolds numbers.
DL-LES model is trained using adjoint PDE optimization methods to match, as closely as possible, direct numerical simulation (DNS) data.
We study the accuracy of the DL-LES model for predicting the drag coefficient, mean flow, and Reynolds stress.
arXiv Detail & Related papers (2022-08-06T11:25:50Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - Convolutional Tensor-Train LSTM for Spatio-temporal Learning [116.24172387469994]
We propose a higher-order LSTM model that can efficiently learn long-term correlations in the video sequence.
This is accomplished through a novel tensor train module that performs prediction by combining convolutional features across time.
Our results achieve state-of-the-art performance-art in a wide range of applications and datasets.
arXiv Detail & Related papers (2020-02-21T05:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.