CluCDD:Contrastive Dialogue Disentanglement via Clustering
- URL: http://arxiv.org/abs/2302.08146v1
- Date: Thu, 16 Feb 2023 08:47:51 GMT
- Title: CluCDD:Contrastive Dialogue Disentanglement via Clustering
- Authors: Jingsheng Gao, Zeyu Li, Suncheng Xiang, Ting Liu, Yuzhuo Fu
- Abstract summary: A huge number of multi-participant dialogues happen online every day.
Dialogue disentanglement aims at separating an entangled dialogue into detached sessions.
We propose a model named CluCDD, which aggregates utterances by contrastive learning.
- Score: 18.06976502939079
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A huge number of multi-participant dialogues happen online every day, which
leads to difficulty in understanding the nature of dialogue dynamics for both
humans and machines. Dialogue disentanglement aims at separating an entangled
dialogue into detached sessions, thus increasing the readability of long
disordered dialogue. Previous studies mainly focus on message-pair
classification and clustering in two-step methods, which cannot guarantee the
whole clustering performance in a dialogue. To address this challenge, we
propose a simple yet effective model named CluCDD, which aggregates utterances
by contrastive learning. More specifically, our model pulls utterances in the
same session together and pushes away utterances in different ones. Then a
clustering method is adopted to generate predicted clustering labels.
Comprehensive experiments conducted on the Movie Dialogue dataset and IRC
dataset demonstrate that our model achieves a new state-of-the-art result.
Related papers
- Multi-turn Dialogue Comprehension from a Topic-aware Perspective [70.37126956655985]
This paper proposes to model multi-turn dialogues from a topic-aware perspective.
We use a dialogue segmentation algorithm to split a dialogue passage into topic-concentrated fragments in an unsupervised way.
We also present a novel model, Topic-Aware Dual-Attention Matching (TADAM) Network, which takes topic segments as processing elements.
arXiv Detail & Related papers (2023-09-18T11:03:55Z) - Revisiting Conversation Discourse for Dialogue Disentanglement [88.3386821205896]
We propose enhancing dialogue disentanglement by taking full advantage of the dialogue discourse characteristics.
We develop a structure-aware framework to integrate the rich structural features for better modeling the conversational semantic context.
Our work has great potential to facilitate broader multi-party multi-thread dialogue applications.
arXiv Detail & Related papers (2023-06-06T19:17:47Z) - Pre-training Multi-party Dialogue Models with Latent Discourse Inference [85.9683181507206]
We pre-train a model that understands the discourse structure of multi-party dialogues, namely, to whom each utterance is replying.
To fully utilize the unlabeled data, we propose to treat the discourse structures as latent variables, then jointly infer them and pre-train the discourse-aware model.
arXiv Detail & Related papers (2023-05-24T14:06:27Z) - Unsupervised Dialogue Topic Segmentation with Topic-aware Utterance
Representation [51.22712675266523]
Dialogue Topic (DTS) plays an essential role in a variety of dialogue modeling tasks.
We propose a novel unsupervised DTS framework, which learns topic-aware utterance representations from unlabeled dialogue data.
arXiv Detail & Related papers (2023-05-04T11:35:23Z) - Multi-Stage Coarse-to-Fine Contrastive Learning for Conversation Intent
Induction [34.25242109800481]
This paper presents our solution to Track 2 of Intent Induction from Conversations for Task-Oriented Dialogue at the Eleventh Dialogue System Technology Challenge (DSTC11)
The essence of intention clustering lies in distinguishing the representation of different dialogue utterances.
In the released DSTC11 evaluation results, our proposed system ranked first on both of the two subtasks of this Track.
arXiv Detail & Related papers (2023-03-09T04:51:27Z) - DIONYSUS: A Pre-trained Model for Low-Resource Dialogue Summarization [127.714919036388]
DIONYSUS is a pre-trained encoder-decoder model for summarizing dialogues in any new domain.
Our experiments show that DIONYSUS outperforms existing methods on six datasets.
arXiv Detail & Related papers (2022-12-20T06:21:21Z) - Structural Modeling for Dialogue Disentanglement [43.352833140317486]
Multi-party dialogue context Tangled multi-party dialogue context leads to challenges for dialogue reading comprehension.
This work designs a novel model to disentangle multi-party history into threads, by taking dialogue structure features into account.
arXiv Detail & Related papers (2021-10-15T11:28:43Z) - Commonsense-Focused Dialogues for Response Generation: An Empirical
Study [39.49727190159279]
We present an empirical study of commonsense in dialogue response generation.
We first auto-extract commonsensical dialogues from existing dialogue datasets by leveraging ConceptNet.
We then collect a new dialogue dataset with 25K dialogues aimed at exhibiting social commonsense in an interactive setting.
arXiv Detail & Related papers (2021-09-14T04:32:09Z) - DialogLM: Pre-trained Model for Long Dialogue Understanding and
Summarization [19.918194137007653]
We present a pre-training framework for long dialogue understanding and summarization.
Considering the nature of long conversations, we propose a window-based denoising approach for generative pre-training.
We conduct extensive experiments on five datasets of long dialogues, covering tasks of dialogue summarization, abstractive question answering and topic segmentation.
arXiv Detail & Related papers (2021-09-06T13:55:03Z) - Filling the Gap of Utterance-aware and Speaker-aware Representation for
Multi-turn Dialogue [76.88174667929665]
A multi-turn dialogue is composed of multiple utterances from two or more different speaker roles.
In the existing retrieval-based multi-turn dialogue modeling, the pre-trained language models (PrLMs) as encoder represent the dialogues coarsely.
We propose a novel model to fill such a gap by modeling the effective utterance-aware and speaker-aware representations entailed in a dialogue history.
arXiv Detail & Related papers (2020-09-14T15:07:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.