論文の概要: Visible-Infrared Person Re-Identification via Patch-Mixed Cross-Modality
Learning
- arxiv url: http://arxiv.org/abs/2302.08212v1
- Date: Thu, 16 Feb 2023 10:56:00 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-17 14:06:31.481328
- Title: Visible-Infrared Person Re-Identification via Patch-Mixed Cross-Modality
Learning
- Title(参考訳): パッチ混合クロスモダリティ学習による可視赤外人物再同定
- Authors: Zhihao Qian, Yutian Lin, Bo Du
- Abstract要約: VI-ReIDのためのパッチ・ミキシング・クロスモダリティ・フレームワーク(PMCM)を提案する。
2つのモダリティから同一人物の2つのイメージをパッチに分割し、モデル学習のための新しい画像に縫い付ける。
フレキシブルな画像生成戦略により、パッチミキシングされた画像は、異なるモダリティパッチの比率を自由に調整する。
- 参考スコア(独自算出の注目度): 31.531900273787375
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Visible-infrared person re-identification (VI-ReID) aims to retrieve images
of the same pedestrian from different modalities, where the challenges lie in
the significant modality discrepancy. To alleviate the modality gap, recent
methods generate intermediate images by GANs, grayscaling, or mixup strategies.
However, these methods could ntroduce extra noise, and the semantic
correspondence between the two modalities is not well learned. In this paper,
we propose a Patch-Mixed Cross-Modality framework (PMCM), where two images of
the same person from two modalities are split into patches and stitched into a
new one for model learning. In this way, the modellearns to recognize a person
through patches of different styles, and the modality semantic correspondence
is directly embodied. With the flexible image generation strategy, the
patch-mixed images freely adjust the ratio of different modality patches, which
could further alleviate the modality imbalance problem. In addition, the
relationship between identity centers among modalities is explored to further
reduce the modality variance, and the global-to-part constraint is introduced
to regularize representation learning of part features. On two VI-ReID
datasets, we report new state-of-the-art performance with the proposed method.
- Abstract(参考訳): Visible-infrared person re-identification (VI-ReID) は、異なるモードから同じ歩行者の画像を取得することを目的としている。
モダリティギャップを軽減するため、最近の手法では、GAN、グレースケーリング、ミックスアップ戦略によって中間画像を生成する。
しかし、これらの手法は余分なノイズを発生させる可能性があり、2つのモダリティ間の意味的対応はよく学習されていない。
本稿では,パッチ混合型クロスモダリティフレームワーク (pmcm) を提案する。このフレームワークでは,同一人物の2つのイメージを2つのモダリティから分割し,新しい画像に縫い合わせることでモデル学習を行う。
このように、モデル学習者は、異なるスタイルのパッチを通して人物を認識できるようにし、モダリティ意味対応を直接具現化する。
柔軟な画像生成戦略により、パッチ混合画像は異なるモダリティパッチの比率を自由に調整し、モダリティ不均衡問題をさらに緩和することができる。
さらに、モジュラリティ間のアイデンティティセンター間の関係について、モダリティの分散をさらに軽減するために検討し、部分特徴の表現学習を正規化するために、グローバル・ツー・パート制約を導入した。
2つのVI-ReIDデータセットに対して,提案手法を用いた新しい最先端性能を報告する。
関連論文リスト
- Unifying Visual and Semantic Feature Spaces with Diffusion Models for Enhanced Cross-Modal Alignment [20.902935570581207]
本稿では,マルチモーダルアライメント・アンド・リコンストラクション・ネットワーク(MARNet)を導入し,視覚ノイズに対するモデルの耐性を高める。
MARNetは、異なるドメイン間で情報をスムーズかつ安定的にブレンドする、クロスモーダル拡散再構成モジュールを含んでいる。
2つのベンチマークデータセットであるVireo-Food172とIngredient-101で実施された実験は、MARNetがモデルによって抽出された画像情報の品質を効果的に改善することを示した。
論文 参考訳(メタデータ) (2024-07-26T16:30:18Z) - Distractors-Immune Representation Learning with Cross-modal Contrastive Regularization for Change Captioning [71.14084801851381]
変更キャプションは、類似した画像間のセマンティックな変化を簡潔に記述することを目的としている。
既存のほとんどの手法は、それらの違いを直接キャプチャし、エラーを起こしやすい特徴を得るリスクを負う。
本稿では,2つの画像表現の対応するチャネルを関連づけるイントラクタ免疫表現学習ネットワークを提案する。
論文 参考訳(メタデータ) (2024-07-16T13:00:33Z) - Modality Unifying Network for Visible-Infrared Person Re-Identification [24.186989535051623]
Visible-infrared person re-identification (VI-ReID) は、異種間の大きな相違とクラス内変異のために難しい課題である。
既存の手法は主に、異なるモダリティを同じ特徴空間に埋め込むことで、モダリティ共有表現を学習することに焦点を当てている。
そこで我々は,VI-ReID の頑健な補助モダリティを探索するために,新しいモダリティ統一ネットワーク (MUN) を提案する。
論文 参考訳(メタデータ) (2023-09-12T14:22:22Z) - Bridging the Gap: Multi-Level Cross-Modality Joint Alignment for
Visible-Infrared Person Re-Identification [41.600294816284865]
Visible-Infrared Person Re-IDentification (VI-ReID)は、歩行者の画像を可視カメラと赤外線カメラに合わせることを目的としている。
モダリティギャップを解決するため、既存の主流手法では、画像検索タスクを画像分類タスクに変換する学習パラダイムを採用している。
モーダリティと目的レベルのギャップを埋める,単純かつ効果的な多層クロスモーダリティ共同アライメント(MCJA)を提案する。
論文 参考訳(メタデータ) (2023-07-17T08:24:05Z) - VLMixer: Unpaired Vision-Language Pre-training via Cross-Modal CutMix [59.25846149124199]
本稿では,データ拡張手法,すなわちクロスモーダルCutMixを提案する。
CMCは自然文をテキストビューからマルチモーダルビューに変換する。
クロスモーダルノイズをユニモーダルデータにアタッチすることで、モダリティ間のトークンレベルの相互作用を学習し、より優れたデノゲーションを実現する。
論文 参考訳(メタデータ) (2022-06-17T17:56:47Z) - Towards Homogeneous Modality Learning and Multi-Granularity Information
Exploration for Visible-Infrared Person Re-Identification [16.22986967958162]
Visible-infrared person re-identification (VI-ReID) は、可視・赤外線カメラビューを介して人物画像の集合を検索することを目的とした、困難かつ必須の課題である。
従来の手法では, GAN (Generative Adversarial Network) を用いて, モーダリティ・コンシデント・データを生成する手法が提案されている。
そこで本研究では、視線外デュアルモード学習をグレーグレー単一モード学習問題として再構成する、統一されたダークラインスペクトルであるAligned Grayscale Modality (AGM)を用いて、モード間マッチング問題に対処する。
論文 参考訳(メタデータ) (2022-04-11T03:03:19Z) - Modality-Adaptive Mixup and Invariant Decomposition for RGB-Infrared
Person Re-Identification [84.32086702849338]
RGB-赤外線人物再同定のための新しいモダリティ適応混合・不変分解(MID)手法を提案する。
MIDは、RGBと赤外線画像の混合画像を生成するためのモダリティ適応混合方式を設計する。
2つの挑戦的なベンチマーク実験は、最先端の手法よりもMIDの優れた性能を示す。
論文 参考訳(メタデータ) (2022-03-03T14:26:49Z) - Exploring Modality-shared Appearance Features and Modality-invariant
Relation Features for Cross-modality Person Re-Identification [72.95858515157603]
クロスモダリティの人物再識別作業は、識別モダリティ共有機能に依存する。
初期の成功にもかかわらず、このようなモダリティ共有の外観機能は十分なモダリティ不変情報をキャプチャできない。
クロスモダリティの変動をさらに低減するために、新しいクロスモダリティ四重極損失が提案される。
論文 参考訳(メタデータ) (2021-04-23T11:14:07Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
ブラインド画像復元はコンピュータビジョンでは一般的だが難しい問題である。
両利点を両立させることを目的として,新しいブラインド画像復元手法を提案する。
画像デノイングと超解像という2つの典型的なブラインド赤外線タスクの実験により,提案手法が現状よりも優れた性能を達成できることが実証された。
論文 参考訳(メタデータ) (2020-08-25T03:30:53Z) - Dynamic Dual-Attentive Aggregation Learning for Visible-Infrared Person
Re-Identification [208.1227090864602]
Visible-infrared person re-identification (VI-ReID) は、歩行者検索の課題である。
既存のVI-ReID法は、識別可能性に制限があり、ノイズの多い画像に対して弱いロバスト性を持つグローバル表現を学習する傾向にある。
そこで我々は,VI-ReIDのための動的二段階集合(DDAG)学習法を提案する。
論文 参考訳(メタデータ) (2020-07-18T03:08:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。