論文の概要: Mind the Gap: Aligning Vision Foundation Models to Image Feature Matching
- arxiv url: http://arxiv.org/abs/2507.10318v1
- Date: Mon, 14 Jul 2025 14:28:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-15 18:48:25.153229
- Title: Mind the Gap: Aligning Vision Foundation Models to Image Feature Matching
- Title(参考訳): Mind the Gap: 画像特徴マッチングのためのビジョンファウンデーションモデル
- Authors: Yuhan Liu, Jingwen Fu, Yang Wu, Kangyi Wu, Pengna Li, Jiayi Wu, Sanping Zhou, Jingmin Xin,
- Abstract要約: IMD (Image Feature Matching with a Pre-trained Diffusion model) と呼ばれる新しいフレームワークを2つのパーツで導入する。
グローバルセマンティクスを重視したコントラッシブラーニングに基づく基礎モデルを用いた支配的なソリューションとは異なり、生成的拡散モデルを統合する。
提案したIMMは,評価されたベンチマークにおいて新たな最先端性を確立し,IMIMの優れた12%の改善は,この手法の誤認識を効果的に軽減することを示す。
- 参考スコア(独自算出の注目度): 31.42132290162457
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Leveraging the vision foundation models has emerged as a mainstream paradigm that improves the performance of image feature matching. However, previous works have ignored the misalignment when introducing the foundation models into feature matching. The misalignment arises from the discrepancy between the foundation models focusing on single-image understanding and the cross-image understanding requirement of feature matching. Specifically, 1) the embeddings derived from commonly used foundation models exhibit discrepancies with the optimal embeddings required for feature matching; 2) lacking an effective mechanism to leverage the single-image understanding ability into cross-image understanding. A significant consequence of the misalignment is they struggle when addressing multi-instance feature matching problems. To address this, we introduce a simple but effective framework, called IMD (Image feature Matching with a pre-trained Diffusion model) with two parts: 1) Unlike the dominant solutions employing contrastive-learning based foundation models that emphasize global semantics, we integrate the generative-based diffusion models to effectively capture instance-level details. 2) We leverage the prompt mechanism in generative model as a natural tunnel, propose a novel cross-image interaction prompting module to facilitate bidirectional information interaction between image pairs. To more accurately measure the misalignment, we propose a new benchmark called IMIM, which focuses on multi-instance scenarios. Our proposed IMD establishes a new state-of-the-art in commonly evaluated benchmarks, and the superior improvement 12% in IMIM indicates our method efficiently mitigates the misalignment.
- Abstract(参考訳): ビジョンファウンデーションモデルを活用することは、画像特徴マッチングのパフォーマンスを改善するための主流パラダイムとして現れました。
しかし、以前の作品では、ファンデーションモデルを特徴マッチングに導入する際のミスアライメントを無視していた。
この不一致は、単一イメージ理解に焦点を当てた基礎モデルと特徴マッチングのクロスイメージ理解要件との相違から生じる。
具体的には
1) 一般的に使用されている基礎モデルから派生した埋め込みは,特徴マッチングに必要な最適な埋め込みと相違点を示す。
2) クロスイメージ理解に単一イメージ理解能力を活用する効果的なメカニズムが欠如している。
このミスアライメントの重大な影響は、マルチインスタンスの特徴マッチング問題に対処するのに苦労していることである。
これを解決するために,IMD (Image Feature Matching with a pre-trained Diffusion model) と呼ばれるシンプルで効果的なフレームワークを紹介した。
1)グローバルセマンティクスを重視したコントラッシブ・ラーニング・ベース・ファンデーション・モデルを用いた支配的なソリューションとは違って,生成的拡散モデルを統合することで,インスタンスレベルの詳細を効果的に把握する。
2) 生成モデルにおけるプロンプト機構を自然トンネルとして活用し, 画像ペア間の双方向情報インタラクションを促進するために, 新たなクロスイメージインタラクションプロンプトモジュールを提案する。
誤認識をより正確に計測するために,マルチインスタンスシナリオに着目したIMIMという新しいベンチマークを提案する。
In this proposed IMD established a new-of-the-art in common benchmarks and the superior improvement 12% in IMIM shows our method indicate our method mitigates the misalignment。
関連論文リスト
- Unlocking the Potential of Text-to-Image Diffusion with PAC-Bayesian Theory [33.78620829249978]
テキスト・ツー・イメージ(T2I)拡散モデルは、高忠実で多彩で視覚的にリアルな画像を生成することによって、生成モデルに革命をもたらした。
最近の注目度に基づく手法は、オブジェクトの包摂性や言語的バインディングを改善してきたが、それでも属性のミスバインディングのような課題に直面している。
そこで,ベイズ的手法を用いて,所望のプロパティを強制するために,注意分布を優先したカスタムプライドを設計する手法を提案する。
本手法では,アテンション機構を解釈可能なコンポーネントとして扱い,微粒化制御と属性オブジェクトアライメントの改善を実現している。
論文 参考訳(メタデータ) (2024-11-25T10:57:48Z) - Human-Object Interaction Detection Collaborated with Large Relation-driven Diffusion Models [65.82564074712836]
テキストと画像の拡散モデルに光を流す新しいHOI検出器であるDIFfusionHOIを紹介する。
まず、埋め込み空間における人間と物体の関係パターンの表現をインバージョンベースで学習する戦略を考案する。
これらの学習された関係埋め込みはテキストのプロンプトとして機能し、スタイア拡散モデルが特定の相互作用を記述する画像を生成する。
論文 参考訳(メタデータ) (2024-10-26T12:00:33Z) - Bridging the Modality Gap: Dimension Information Alignment and Sparse Spatial Constraint for Image-Text Matching [10.709744162565274]
本稿では2つの側面からモダリティギャップを橋渡しするDIASと呼ばれる新しい手法を提案する。
この方法はFlickr30kとMSCOCOベンチマークで4.3%-10.2%のrSum改善を実現している。
論文 参考訳(メタデータ) (2024-10-22T09:37:29Z) - A Plug-and-Play Method for Rare Human-Object Interactions Detection by Bridging Domain Gap [50.079224604394]
textbfContext-textbfEnhanced textbfFeature textbfAment (CEFA) と呼ばれる新しいモデルに依存しないフレームワークを提案する。
CEFAは機能アライメントモジュールとコンテキスト拡張モジュールで構成される。
本手法は, 稀なカテゴリにおけるHOIモデルの検出性能を向上させるために, プラグアンドプレイモジュールとして機能する。
論文 参考訳(メタデータ) (2024-07-31T08:42:48Z) - Unifying Visual and Semantic Feature Spaces with Diffusion Models for Enhanced Cross-Modal Alignment [20.902935570581207]
本稿では,マルチモーダルアライメント・アンド・リコンストラクション・ネットワーク(MARNet)を導入し,視覚ノイズに対するモデルの耐性を高める。
MARNetは、異なるドメイン間で情報をスムーズかつ安定的にブレンドする、クロスモーダル拡散再構成モジュールを含んでいる。
2つのベンチマークデータセットであるVireo-Food172とIngredient-101で実施された実験は、MARNetがモデルによって抽出された画像情報の品質を効果的に改善することを示した。
論文 参考訳(メタデータ) (2024-07-26T16:30:18Z) - ARNet: Self-Supervised FG-SBIR with Unified Sample Feature Alignment and Multi-Scale Token Recycling [11.129453244307369]
FG-SBIRは、埋め込み空間におけるスケッチと対応する画像の距離を最小化することを目的としている。
両領域間のギャップを狭める効果的なアプローチを提案する。
主に、イントラサンプルとインターサンプルの両方を共有する統一的な相互情報共有を促進する。
論文 参考訳(メタデータ) (2024-06-17T13:49:12Z) - Information Theoretic Text-to-Image Alignment [49.396917351264655]
相互情報(MI)は、モデルアライメントのガイドに使用される。
本手法は,自己教師型微調整を用いて,プロンプトと画像間のポイントワイド(MI)推定に依存する。
解析の結果,本手法は最先端の手法よりも優れているが,MIを推定するにはT2Iモデル自体の事前学習されたデノナイジングネットワークが必要であることが示唆された。
論文 参考訳(メタデータ) (2024-05-31T12:20:02Z) - Symmetrical Bidirectional Knowledge Alignment for Zero-Shot Sketch-Based
Image Retrieval [69.46139774646308]
本稿ではゼロショットスケッチベース画像検索(ZS-SBIR)の問題点について検討する。
目に見えないカテゴリのスケッチをクエリとして使用して、同じカテゴリのイメージにマッチさせることが目的だ。
ゼロショットスケッチに基づく画像検索(SBKA)のための新しい対称双方向知識アライメントを提案する。
論文 参考訳(メタデータ) (2023-12-16T04:50:34Z) - Separate-and-Enhance: Compositional Finetuning for Text2Image Diffusion
Models [58.46926334842161]
この研究は、注意力の低いアクティベーションスコアとマスクオーバーラップに関連する問題を指摘し、このような不一致の根本的な理由を照らしている。
本稿では,物体マスクの重なりを低減し,注目度を最大化する2つの新しい目的,分離損失とエンハンス損失を提案する。
提案手法は従来のテスト時間適応手法と異なり,拡張性と一般化性を高める重要なパラメータの微調整に重点を置いている。
論文 参考訳(メタデータ) (2023-12-10T22:07:42Z) - Contrast-augmented Diffusion Model with Fine-grained Sequence Alignment
for Markup-to-Image Generation [15.411325887412413]
本稿では,FSA-CDM (Contrast-augmented Diffusion Model with Fine-fine Sequence Alignment) という新しいモデルを提案する。
FSA-CDMは、マークアップ・ツー・イメージ生成の性能を高めるために、対照的な正/負のサンプルを拡散モデルに導入する。
異なるドメインの4つのベンチマークデータセットで実験が行われる。
論文 参考訳(メタデータ) (2023-08-02T13:43:03Z) - Switchable Representation Learning Framework with Self-compatibility [50.48336074436792]
自己整合性(SFSC)を考慮した交換可能な表現学習フレームワークを提案する。
SFSCは1つのトレーニングプロセスを通じて、異なる能力を持つ一連の互換性のあるサブモデルを生成する。
SFSCは評価データセット上で最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2022-06-16T16:46:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。