論文の概要: Advanced Meta-Ensemble Machine Learning Models for Early and Accurate Sepsis Prediction to Improve Patient Outcomes
- arxiv url: http://arxiv.org/abs/2407.08107v1
- Date: Thu, 11 Jul 2024 00:51:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-12 19:18:18.613171
- Title: Advanced Meta-Ensemble Machine Learning Models for Early and Accurate Sepsis Prediction to Improve Patient Outcomes
- Title(参考訳): 患者アウトカム改善のための早期・高精度セプシス予測のための高度なメタアンサンブル機械学習モデル
- Authors: MohammadAmin Ansari Khoushabar, Parviz Ghafariasl,
- Abstract要約: 本報告では, 全身性炎症性反応症候群, 早期警戒スコア, クイックシークエンシャル臓器不全評価など, 従来の敗血症スクリーニングツールの限界について検討する。
本稿では,機械学習技術 - ランダムフォレスト, エクストリームグラディエントブースティング, 決定木モデル - を用いて, セプシスの発症を予測することを提案する。
本研究は,これらのモデルについて,精度,精度,リコール,F1スコア,受信器動作特性曲線の下での領域といった重要な指標を用いて,個別かつ組み合わせたメタアンサンブルアプローチで評価する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Sepsis, a critical condition from the body's response to infection, poses a major global health crisis affecting all age groups. Timely detection and intervention are crucial for reducing healthcare expenses and improving patient outcomes. This paper examines the limitations of traditional sepsis screening tools like Systemic Inflammatory Response Syndrome, Modified Early Warning Score, and Quick Sequential Organ Failure Assessment, highlighting the need for advanced approaches. We propose using machine learning techniques - Random Forest, Extreme Gradient Boosting, and Decision Tree models - to predict sepsis onset. Our study evaluates these models individually and in a combined meta-ensemble approach using key metrics such as Accuracy, Precision, Recall, F1 score, and Area Under the Receiver Operating Characteristic Curve. Results show that the meta-ensemble model outperforms individual models, achieving an AUC-ROC score of 0.96, indicating superior predictive accuracy for early sepsis detection. The Random Forest model also performs well with an AUC-ROC score of 0.95, while Extreme Gradient Boosting and Decision Tree models score 0.94 and 0.90, respectively.
- Abstract(参考訳): セプシスは、感染に対する身体の反応から重篤な状態であり、すべての年齢層に影響を及ぼす世界的な健康危機を引き起こしている。
タイムリーな検出と介入は、医療費の削減と患者の成果改善に不可欠である。
本稿では, 全身性炎症性反応症候群, 修正早期警戒スコア, クイックシークエンシャル臓器不全評価など, 従来の敗血症スクリーニングツールの限界について検討し, 高度なアプローチの必要性を強調した。
本稿では,機械学習技術 - ランダムフォレスト, エクストリームグラディエントブースティング, 決定木モデル - を用いて, セプシスの発症を予測することを提案する。
本研究は,これらのモデルについて,精度,精度,リコール,F1スコア,受信器動作特性曲線の下での領域といった重要な指標を用いて,個別かつ組み合わせたメタアンサンブルアプローチで評価する。
その結果、メタアンサンブルモデルは個々のモデルよりも優れており、AUC-ROCスコアは0.96であり、早期敗血症検出の予測精度が優れていることが示された。
ランダムフォレストモデルではAUC-ROCスコアが0.95、エクストリームグラディエントブースティングと決定木モデルでは0.94と0.90がそれぞれ良好に動作する。
関連論文リスト
- Data-Driven Machine Learning Approaches for Predicting In-Hospital Sepsis Mortality [0.0]
本研究の目的は,臨床専門家が院内死亡を予測できるように,解釈可能かつ正確なMLモデルを開発することである。
特定基準に基づいてMIMIC-IIIデータベースからICU患者の記録を分析し,関連データを抽出した。
ランダムフォレストモデルは敗血症関連院内死亡の予測に最も効果的であった。
論文 参考訳(メタデータ) (2024-08-03T00:28:25Z) - Enhanced Prediction of Ventilator-Associated Pneumonia in Patients with Traumatic Brain Injury Using Advanced Machine Learning Techniques [0.0]
外傷性脳損傷(TBI)患者の呼吸器関連肺炎(VAP)は重大な死亡リスクをもたらす。
TBI患者のVAPのタイムリーな検出と予後は、患者の予後を改善し、医療資源の負担を軽減するために重要である。
我々はMIMIC-IIIデータベースを用いて6つの機械学習モデルを実装した。
論文 参考訳(メタデータ) (2024-08-02T09:44:18Z) - Improving Machine Learning Based Sepsis Diagnosis Using Heart Rate Variability [0.0]
本研究の目的は、心拍変動(HRV)機能を用いて、敗血症検出のための効果的な予測モデルを開発することである。
ニューラルネットワークモデルは、HRVの特徴に基づいてトレーニングされ、F1スコアは0.805、精度は0.851、リコールは0.763である。
論文 参考訳(メタデータ) (2024-08-01T01:47:29Z) - SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
セプシスは米国での院内死亡の主な原因である。
既存の予測モデルは通常、情報不足の少ない高品質なデータで訓練される。
限られた観察により信頼性の低い高リスク患者に対して,ロバストな能動センシングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-07-24T04:47:36Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
変形性膝関節症 (KOA) は膝関節の慢性的な痛みと硬直を引き起こす疾患である。
我々は,Swin Transformer を用いて KOA の重大度を予測する自動手法を提案する。
論文 参考訳(メタデータ) (2023-07-10T09:49:30Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
そこで本稿では, 放射線学者が注釈付けした大規模データセットからの転写学習を活用して, 小さい付加データセットで利用できる組織学的スコアを予測することを提案する。
我々は,肝硬変の予測を改善するために,異なる事前訓練法,すなわち弱い指導法と自己指導法を比較した。
この方法は、METAVIRスコアのベースライン分類を上回り、AUCが0.84、バランスの取れた精度が0.75に達する。
論文 参考訳(メタデータ) (2023-02-16T17:06:23Z) - Clinical Deterioration Prediction in Brazilian Hospitals Based on
Artificial Neural Networks and Tree Decision Models [56.93322937189087]
超強化ニューラルネットワーク(XBNet)は臨床劣化(CD)を予測するために用いられる
XGBoostモデルはブラジルの病院のデータからCDを予測する最良の結果を得た。
論文 参考訳(メタデータ) (2022-12-17T23:29:14Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
このフレームワークには、飲み込みレベルにおけるディープラーニングモデルと、学習レベルにおける機能ベースの機械学習モデルが含まれている。
これは、生のマルチスワローデータからHRM研究のCC診断を自動的に予測する最初の人工知能モデルである。
論文 参考訳(メタデータ) (2021-06-25T20:09:23Z) - The Consequences of the Framing of Machine Learning Risk Prediction
Models: Evaluation of Sepsis in General Wards [0.0]
フレーミングがモデル性能とモデル学習に与える影響を4つの異なるアプローチで評価する。
デンマークの4自治体の221,283人の二次医療データを分析した。
論文 参考訳(メタデータ) (2021-01-26T14:00:05Z) - A Knowledge Distillation Ensemble Framework for Predicting Short and
Long-term Hospitalisation Outcomes from Electronic Health Records Data [5.844828229178025]
既存の結果予測モデルは、頻繁なポジティブな結果の低いリコールに悩まされる。
我々は、死亡率とICUの受け入れによって表される逆さを自動的に予測する、高度にスケーリング可能な、堅牢な機械学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-11-18T15:56:28Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。