Graph Neural Networks over the Air for Decentralized Tasks in Wireless Networks
- URL: http://arxiv.org/abs/2302.08447v3
- Date: Tue, 21 May 2024 14:35:50 GMT
- Title: Graph Neural Networks over the Air for Decentralized Tasks in Wireless Networks
- Authors: Zhan Gao, Deniz Gunduz,
- Abstract summary: This paper studies the impact of channel impairments on the performance of graph neural networks over the air (AirGNNs)
AirGNNs modify graph convolutional operations that shift graph signals over random communication graphs to take into account channel fading and noise.
Experiments on decentralized source localization and multi-robot flocking show superior performance of AirGNNs over wireless communication channels.
- Score: 6.007238205454907
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph neural networks (GNNs) model representations from networked data and allow for decentralized inference through localized communications. Existing GNN architectures often assume ideal communications and ignore potential channel effects, such as fading and noise, leading to performance degradation in real-world implementation. Considering a GNN implemented over nodes connected through wireless links, this paper conducts a stability analysis to study the impact of channel impairments on the performance of GNNs, and proposes graph neural networks over the air (AirGNNs), a novel GNN architecture that incorporates the communication model. AirGNNs modify graph convolutional operations that shift graph signals over random communication graphs to take into account channel fading and noise when aggregating features from neighbors, thus, improving architecture robustness to channel impairments during testing. We develop a channel-inversion signal transmission strategy for AirGNNs when channel state information (CSI) is available, and propose a stochastic gradient descent based method to train AirGNNs when CSI is unknown. The convergence analysis shows that the training procedure approaches a stationary solution of an associated stochastic optimization problem and the variance analysis characterizes the statistical behavior of the trained model. Experiments on decentralized source localization and multi-robot flocking corroborate theoretical findings and show superior performance of AirGNNs over wireless communication channels.
Related papers
- BLIS-Net: Classifying and Analyzing Signals on Graphs [20.345611294709244]
Graph neural networks (GNNs) have emerged as a powerful tool for tasks such as node classification and graph classification.
We introduce the BLIS-Net (Bi-Lipschitz Scattering Net), a novel GNN that builds on the previously introduced geometric scattering transform.
We show that BLIS-Net achieves superior performance on both synthetic and real-world data sets based on traffic flow and fMRI data.
arXiv Detail & Related papers (2023-10-26T17:03:14Z) - Feature Transportation Improves Graph Neural Networks [15.919986945096182]
Graph neural networks (GNNs) have shown remarkable success in learning representations for graph-structured data.
In this paper, we propose a novel GNN architecture inspired by Advection-Diffusion-Reaction systems, called ADR-GNN.
arXiv Detail & Related papers (2023-07-29T23:31:18Z) - Re-Think and Re-Design Graph Neural Networks in Spaces of Continuous
Graph Diffusion Functionals [7.6435511285856865]
Graph neural networks (GNNs) are widely used in domains like social networks and biological systems.
locality assumption of GNNs hampers their ability to capture long-range dependencies and global patterns in graphs.
We propose a new inductive bias based on variational analysis, drawing inspiration from the Brachchronistoe problem.
arXiv Detail & Related papers (2023-07-01T04:44:43Z) - Learning Stable Graph Neural Networks via Spectral Regularization [18.32587282139282]
Stability of graph neural networks (GNNs) characterizes how GNNs react to graph perturbations and provides guarantees for architecture performance in noisy scenarios.
This paper develops a self-regularized graph neural network (SR-GNN) that improves the architecture stability by regularizing the filter frequency responses in the graph spectral domain.
arXiv Detail & Related papers (2022-11-13T17:27:21Z) - EvenNet: Ignoring Odd-Hop Neighbors Improves Robustness of Graph Neural
Networks [51.42338058718487]
Graph Neural Networks (GNNs) have received extensive research attention for their promising performance in graph machine learning.
Existing approaches, such as GCN and GPRGNN, are not robust in the face of homophily changes on test graphs.
We propose EvenNet, a spectral GNN corresponding to an even-polynomial graph filter.
arXiv Detail & Related papers (2022-05-27T10:48:14Z) - Decentralized Inference with Graph Neural Networks in Wireless
Communication Systems [37.95584442614985]
Graph neural network (GNN) is an efficient neural network model for graph data and is widely used in different fields, including wireless communications.
In this paper, we analyze and enhance the robustness of the decentralized GNN in different wireless communication systems.
arXiv Detail & Related papers (2021-04-19T03:12:24Z) - Graph Neural Networks: Architectures, Stability and Transferability [176.3960927323358]
Graph Neural Networks (GNNs) are information processing architectures for signals supported on graphs.
They are generalizations of convolutional neural networks (CNNs) in which individual layers contain banks of graph convolutional filters.
arXiv Detail & Related papers (2020-08-04T18:57:36Z) - Graph Neural Networks for Motion Planning [108.51253840181677]
We present two techniques, GNNs over dense fixed graphs for low-dimensional problems and sampling-based GNNs for high-dimensional problems.
We examine the ability of a GNN to tackle planning problems such as identifying critical nodes or learning the sampling distribution in Rapidly-exploring Random Trees (RRT)
Experiments with critical sampling, a pendulum and a six DoF robot arm show GNNs improve on traditional analytic methods as well as learning approaches using fully-connected or convolutional neural networks.
arXiv Detail & Related papers (2020-06-11T08:19:06Z) - Bayesian Graph Neural Networks with Adaptive Connection Sampling [62.51689735630133]
We propose a unified framework for adaptive connection sampling in graph neural networks (GNNs)
The proposed framework not only alleviates over-smoothing and over-fitting tendencies of deep GNNs, but also enables learning with uncertainty in graph analytic tasks with GNNs.
arXiv Detail & Related papers (2020-06-07T07:06:35Z) - Stochastic Graph Neural Networks [123.39024384275054]
Graph neural networks (GNNs) model nonlinear representations in graph data with applications in distributed agent coordination, control, and planning.
Current GNN architectures assume ideal scenarios and ignore link fluctuations that occur due to environment, human factors, or external attacks.
In these situations, the GNN fails to address its distributed task if the topological randomness is not considered accordingly.
arXiv Detail & Related papers (2020-06-04T08:00:00Z) - Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph
Neural Networks [183.97265247061847]
We leverage graph signal processing to characterize the representation space of graph neural networks (GNNs)
We discuss the role of graph convolutional filters in GNNs and show that any architecture built with such filters has the fundamental properties of permutation equivariance and stability to changes in the topology.
We also study the use of GNNs in recommender systems and learning decentralized controllers for robot swarms.
arXiv Detail & Related papers (2020-03-08T13:02:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.