Non-Fermi liquids from kinetic constraints in tilted optical lattices
- URL: http://arxiv.org/abs/2302.08499v1
- Date: Thu, 16 Feb 2023 18:54:43 GMT
- Title: Non-Fermi liquids from kinetic constraints in tilted optical lattices
- Authors: Ethan Lake, T. Senthil
- Abstract summary: We show how the kinetic constraints stabilize an exotic non-Fermi liquid phase described by fermions coupled to a gapless bosonic field.
This offers a novel route towards the study of non-Fermi liquid phases in the precision environments afforded by ultracold atom platforms.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study Fermi-Hubbard models with kinetically constrained dynamics that
conserves both total particle number and total center of mass, a situation that
arises when interacting fermions are placed in strongly tilted optical
lattices. Through a combination of analytics and numerics, we show how the
kinetic constraints stabilize an exotic non-Fermi liquid phase described by
fermions coupled to a gapless bosonic field, which in many respects mimics a
dynamical gauge field. This offers a novel route towards the study of non-Fermi
liquid phases in the precision environments afforded by ultracold atom
platforms.
Related papers
- Emergent Kitaev materials in synthetic Fermi-Hubbard bilayers [49.1574468325115]
Bond-directional spin-spin interactions in a Fermi-Hubbard bilayer can be realized with ultracold fermions in Raman optical lattices.
We analyze the Fermi-liquid and Mott-insulating phases, highlighting a correspondence between Dirac and Majorana quasi-particles.
Our results establish that cold-atom quantum simulators based on Raman optical lattices can be a playground for extended Kitaev models.
arXiv Detail & Related papers (2025-04-22T10:07:56Z) - Fluctuation-induced Bistability of Fermionic Atoms Coupled to a Dissipative Cavity [0.0]
We investigate the steady state phase diagram of fermionic atoms subjected to an optical lattice and coupled to a high finesse optical cavity with photon losses.
We find that a transition to a self-organized phase takes place at a critical value of the pump strength.
Surprisingly, at even larger pump strengths two self-organized stable solutions of the cavity field and the atoms occur, signaling the presence of a bistability.
arXiv Detail & Related papers (2024-09-24T12:33:06Z) - Dynamical Spectral Response of Fractonic Quantum Matter [0.0]
We study the low-energy excitations of a constrained Bose-Hubbard model in one dimension.
We show the existence of gapped excitations compatible with strong coupling results.
arXiv Detail & Related papers (2023-10-24T18:00:01Z) - The strongly driven Fermi polaron [49.81410781350196]
Quasiparticles are emergent excitations of matter that underlie much of our understanding of quantum many-body systems.
We take advantage of the clean setting of homogeneous quantum gases and fast radio-frequency control to manipulate Fermi polarons.
We measure the decay rate and the quasiparticle residue of the driven polaron from the Rabi oscillations between the two internal states.
arXiv Detail & Related papers (2023-08-10T17:59:51Z) - Fermionic matter-wave quantum optics with cold-atom impurity models [0.688204255655161]
We study simple fermionic impurity models and discuss fermionic analogues of several paradigmatic phenomena in quantum optics.
For a single impurity, we highlight interesting ground-state features, focusing in particular on real-space signatures of an emergent length scale associated with an impurity screening cloud.
arXiv Detail & Related papers (2023-05-19T11:39:27Z) - Kagome qubit ice [55.73970798291771]
Topological phases of spin liquids with constrained disorder can host a kinetics of fractionalized excitations.
We present a realization of kagome spin ice in the superconducting qubits of a quantum annealer.
We show evidence of both the Ice-I phase and an unconventional field-induced Ice-II phase.
arXiv Detail & Related papers (2023-01-04T23:46:48Z) - Nonequilibrium phases of ultracold bosons with cavity-induced dynamic
gauge fields [0.0]
We study nonequilibrium dynamical phases appearing in a two-leg bosonic lattice model with leg-dependent, dynamical complex tunnelings mediated by two-photon Raman processes.
Notably, the phase diagram features a plethora of nonequilibrium dynamical phases including limit-cycle and chaotic phases.
In the end, we relate regular periodic dynamics (i.e., limit-cycle phases) of the system to time crystals.
arXiv Detail & Related papers (2022-08-09T08:37:03Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Rotating Majorana Zero Modes in a disk geometry [75.34254292381189]
We study the manipulation of Majorana zero modes in a thin disk made from a $p$-wave superconductor.
We analyze the second-order topological corner modes that arise when an in-plane magnetic field is applied.
We show that oscillations persist even in the adiabatic phase because of a frequency independent coupling between zero modes and excited states.
arXiv Detail & Related papers (2021-09-08T11:18:50Z) - Phases and dynamics of ultracold bosons in a tilted optical lattice [0.0]
We present a brief overview of the phases and dynamics of ultracold bosons in an optical lattice in the presence of a tilt.
We chart the relation of this model to the recently studied system of ultracold Rydberg atoms.
arXiv Detail & Related papers (2021-09-06T18:00:02Z) - Bloch-Landau-Zener dynamics induced by a synthetic field in a photonic
quantum walk [52.77024349608834]
We realize a photonic quantum walk in the presence of a synthetic gauge field.
We investigate intriguing system dynamics characterized by the interplay between Bloch oscillations and Landau-Zener transitions.
arXiv Detail & Related papers (2020-11-11T16:35:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.