A Hybrid Chimp Optimization Algorithm and Generalized Normal
Distribution Algorithm with Opposition-Based Learning Strategy for Solving
Data Clustering Problems
- URL: http://arxiv.org/abs/2302.08623v1
- Date: Thu, 16 Feb 2023 23:29:01 GMT
- Title: A Hybrid Chimp Optimization Algorithm and Generalized Normal
Distribution Algorithm with Opposition-Based Learning Strategy for Solving
Data Clustering Problems
- Authors: Sayed Pedram Haeri Boroujeni, Elnaz Pashaei
- Abstract summary: This paper is concerned with data clustering to separate clusters based on the connectivity principle for categorizing similar and dissimilar data into different groups.
Successful meta-heuristic optimization algorithms and intelligence-based methods have been introduced to attain the optimal solution in a reasonable time.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: This paper is concerned with data clustering to separate clusters based on
the connectivity principle for categorizing similar and dissimilar data into
different groups. Although classical clustering algorithms such as K-means are
efficient techniques, they often trap in local optima and have a slow
convergence rate in solving high-dimensional problems. To address these issues,
many successful meta-heuristic optimization algorithms and intelligence-based
methods have been introduced to attain the optimal solution in a reasonable
time. They are designed to escape from a local optimum problem by allowing
flexible movements or random behaviors. In this study, we attempt to
conceptualize a powerful approach using the three main components: Chimp
Optimization Algorithm (ChOA), Generalized Normal Distribution Algorithm
(GNDA), and Opposition-Based Learning (OBL) method. Firstly, two versions of
ChOA with two different independent groups' strategies and seven chaotic maps,
entitled ChOA(I) and ChOA(II), are presented to achieve the best possible
result for data clustering purposes. Secondly, a novel combination of ChOA and
GNDA algorithms with the OBL strategy is devised to solve the major
shortcomings of the original algorithms. Lastly, the proposed ChOAGNDA method
is a Selective Opposition (SO) algorithm based on ChOA and GNDA, which can be
used to tackle large and complex real-world optimization problems, particularly
data clustering applications. The results are evaluated against seven popular
meta-heuristic optimization algorithms and eight recent state-of-the-art
clustering techniques. Experimental results illustrate that the proposed work
significantly outperforms other existing methods in terms of the achievement in
minimizing the Sum of Intra-Cluster Distances (SICD), obtaining the lowest
Error Rate (ER), accelerating the convergence speed, and finding the optimal
cluster centers.
Related papers
- Faster Optimal Coalition Structure Generation via Offline Coalition Selection and Graph-Based Search [61.08720171136229]
We present a novel algorithm, SMART, for the problem based on a hybridization of three innovative techniques.
Two of these techniques are based on dynamic programming, where we show a powerful connection between the coalitions selected for evaluation and the performance of the algorithms.
Our techniques bring a new way of approaching the problem and a new level of precision to the field.
arXiv Detail & Related papers (2024-07-22T23:24:03Z) - A3S: A General Active Clustering Method with Pairwise Constraints [66.74627463101837]
A3S features strategic active clustering adjustment on the initial cluster result, which is obtained by an adaptive clustering algorithm.
In extensive experiments across diverse real-world datasets, A3S achieves desired results with significantly fewer human queries.
arXiv Detail & Related papers (2024-07-14T13:37:03Z) - A Nonlinear African Vulture Optimization Algorithm Combining Henon Chaotic Mapping Theory and Reverse Learning Competition Strategy [9.252838762325927]
The Henon chaotic mapping theory and elite population strategy are proposed to improve the randomness and diversity of the vulture's initial population.
The reverse learning competition strategy is designed to expand the discovery fields for the optimal solution.
The proposed HWEAVOA is ranked first in all test functions, which is superior to the comparison algorithms in convergence speed, optimization ability, and solution stability.
arXiv Detail & Related papers (2024-03-22T01:20:45Z) - Modified LAB Algorithm with Clustering-based Search Space Reduction
Method for solving Engineering Design Problems [0.7789406630452325]
A modified LAB algorithm is introduced in this paper.
The proposed algorithm incorporates the roulette wheel approach and a reduction factor introducing inter-group competition.
The algorithm exhibited improved and superior robustness as well as search space exploration capabilities.
arXiv Detail & Related papers (2023-10-04T12:35:13Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
A current standard approach to solving convex discrete optimization problems is the use of cutting-plane algorithms.
Despite the existence of a number of general-purpose cut-generating algorithms, large-scale discrete optimization problems continue to suffer from intractability.
We propose a method for accelerating cutting-plane algorithms via reinforcement learning.
arXiv Detail & Related papers (2023-07-17T20:11:56Z) - Regularization and Optimization in Model-Based Clustering [4.096453902709292]
k-means algorithm variants essentially fit a mixture of identical spherical Gaussians to data that vastly deviates from such a distribution.
We develop more effective optimization algorithms for general GMMs, and we combine these algorithms with regularization strategies that avoid overfitting.
These results shed new light on the current status quo between GMM and k-means methods and suggest the more frequent use of general GMMs for data exploration.
arXiv Detail & Related papers (2023-02-05T18:22:29Z) - Late Fusion Multi-view Clustering via Global and Local Alignment
Maximization [61.89218392703043]
Multi-view clustering (MVC) optimally integrates complementary information from different views to improve clustering performance.
Most of existing approaches directly fuse multiple pre-specified similarities to learn an optimal similarity matrix for clustering.
We propose late fusion MVC via alignment to address these issues.
arXiv Detail & Related papers (2022-08-02T01:49:31Z) - Adaptive Group Collaborative Artificial Bee Colony Algorithm [12.843155301033512]
artificial bee colony (ABC) algorithm has shown to be competitive.
It is poor at balancing the abilities of global searching in the whole solution space (named as exploration) and quick searching in local solution space.
For improving the performance of ABC, an adaptive group collaborative ABC (AgABC) algorithm is introduced.
arXiv Detail & Related papers (2021-12-02T13:33:37Z) - An Exact Algorithm for Semi-supervised Minimum Sum-of-Squares Clustering [0.5801044612920815]
We present a new branch-and-bound algorithm for semi-supervised MSSC.
Background knowledge is incorporated as pairwise must-link and cannot-link constraints.
For the first time, the proposed global optimization algorithm efficiently manages to solve real-world instances up to 800 data points.
arXiv Detail & Related papers (2021-11-30T17:08:53Z) - Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex
Decentralized Optimization Over Time-Varying Networks [79.16773494166644]
We consider the task of minimizing the sum of smooth and strongly convex functions stored in a decentralized manner across the nodes of a communication network.
We design two optimal algorithms that attain these lower bounds.
We corroborate the theoretical efficiency of these algorithms by performing an experimental comparison with existing state-of-the-art methods.
arXiv Detail & Related papers (2021-06-08T15:54:44Z) - FedPD: A Federated Learning Framework with Optimal Rates and Adaptivity
to Non-IID Data [59.50904660420082]
Federated Learning (FL) has become a popular paradigm for learning from distributed data.
To effectively utilize data at different devices without moving them to the cloud, algorithms such as the Federated Averaging (FedAvg) have adopted a "computation then aggregation" (CTA) model.
arXiv Detail & Related papers (2020-05-22T23:07:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.