Faster Optimal Coalition Structure Generation via Offline Coalition Selection and Graph-Based Search
- URL: http://arxiv.org/abs/2407.16092v1
- Date: Mon, 22 Jul 2024 23:24:03 GMT
- Title: Faster Optimal Coalition Structure Generation via Offline Coalition Selection and Graph-Based Search
- Authors: Redha Taguelmimt, Samir Aknine, Djamila Boukredera, Narayan Changder, Tuomas Sandholm,
- Abstract summary: We present a novel algorithm, SMART, for the problem based on a hybridization of three innovative techniques.
Two of these techniques are based on dynamic programming, where we show a powerful connection between the coalitions selected for evaluation and the performance of the algorithms.
Our techniques bring a new way of approaching the problem and a new level of precision to the field.
- Score: 61.08720171136229
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Coalition formation is a key capability in multi-agent systems. An important problem in coalition formation is coalition structure generation: partitioning agents into coalitions to optimize the social welfare. This is a challenging problem that has been the subject of active research for the past three decades. In this paper, we present a novel algorithm, SMART, for the problem based on a hybridization of three innovative techniques. Two of these techniques are based on dynamic programming, where we show a powerful connection between the coalitions selected for evaluation and the performance of the algorithms. These algorithms use offline phases to optimize the choice of coalitions to evaluate. The third one uses branch-and-bound and integer partition graph search to explore the solution space. Our techniques bring a new way of approaching the problem and a new level of precision to the field. In experiments over several common value distributions, we show that the hybridization of these techniques in SMART is faster than the fastest prior algorithms (ODP-IP, BOSS) in generating optimal solutions across all the value distributions.
Related papers
- Decision-focused Graph Neural Networks for Combinatorial Optimization [62.34623670845006]
An emerging strategy to tackle optimization problems involves the adoption of graph neural networks (GNNs) as an alternative to traditional algorithms.
Despite the growing popularity of GNNs and traditional algorithm solvers in the realm of CO, there is limited research on their integrated use and the correlation between them within an end-to-end framework.
We introduce a decision-focused framework that utilizes GNNs to address CO problems with auxiliary support.
arXiv Detail & Related papers (2024-06-05T22:52:27Z) - COMBHelper: A Neural Approach to Reduce Search Space for Graph
Combinatorial Problems [19.442683583536137]
COMBHelper employs a Graph Neural Network (GNN) to identify promising nodes for the solution set.
It also uses a Knowledge Distillation (KD) module and a problem-specific boosting module to bring further efficiency and efficacy.
Our experiments show that the traditional CO algorithms with COMBHelper are at least 2 times faster than their original versions.
arXiv Detail & Related papers (2023-12-14T16:17:20Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
We introduce a novel theoretical framework for analyzing the effectiveness of DeepMatching Networks and Reinforcement Learning methods.
Our main contribution holds for a broad class of problems including Max-and Min-Cut, Max-$k$-Bipartite-Bi, Maximum-Weight-Bipartite-Bi, and Traveling Salesman Problem.
As a byproduct of our analysis we introduce a novel regularization process over vanilla descent and provide theoretical and experimental evidence that it helps address vanishing-gradient issues and escape bad stationary points.
arXiv Detail & Related papers (2023-10-08T23:39:38Z) - A Hybrid Chimp Optimization Algorithm and Generalized Normal
Distribution Algorithm with Opposition-Based Learning Strategy for Solving
Data Clustering Problems [0.0]
This paper is concerned with data clustering to separate clusters based on the connectivity principle for categorizing similar and dissimilar data into different groups.
Successful meta-heuristic optimization algorithms and intelligence-based methods have been introduced to attain the optimal solution in a reasonable time.
arXiv Detail & Related papers (2023-02-16T23:29:01Z) - A Copositive Framework for Analysis of Hybrid Ising-Classical Algorithms [18.075115172621096]
We present a formal analysis of hybrid algorithms in the context of solving mixed-binary quadratic programs via Ising solvers.
We propose to solve this reformulation with a hybrid quantum-classical cutting-plane algorithm.
arXiv Detail & Related papers (2022-07-27T16:47:32Z) - On the Convergence of Distributed Stochastic Bilevel Optimization
Algorithms over a Network [55.56019538079826]
Bilevel optimization has been applied to a wide variety of machine learning models.
Most existing algorithms restrict their single-machine setting so that they are incapable of handling distributed data.
We develop novel decentralized bilevel optimization algorithms based on a gradient tracking communication mechanism and two different gradients.
arXiv Detail & Related papers (2022-06-30T05:29:52Z) - A Bi-Level Framework for Learning to Solve Combinatorial Optimization on
Graphs [91.07247251502564]
We propose a hybrid approach to combine the best of the two worlds, in which a bi-level framework is developed with an upper-level learning method to optimize the graph.
Such a bi-level approach simplifies the learning on the original hard CO and can effectively mitigate the demand for model capacity.
arXiv Detail & Related papers (2021-06-09T09:18:18Z) - Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex
Decentralized Optimization Over Time-Varying Networks [79.16773494166644]
We consider the task of minimizing the sum of smooth and strongly convex functions stored in a decentralized manner across the nodes of a communication network.
We design two optimal algorithms that attain these lower bounds.
We corroborate the theoretical efficiency of these algorithms by performing an experimental comparison with existing state-of-the-art methods.
arXiv Detail & Related papers (2021-06-08T15:54:44Z) - On Population-Based Algorithms for Distributed Constraint Optimization
Problems [12.21350091202884]
We study an emerging class of incomplete algorithms that are broadly termed as population-based algorithms.
Our first approach, Anytime Evolutionary DCOP or AED, exploits evolutionary optimization meta-heuristics to solve DCOPs.
While in our second contribution, we show that population-based approaches can be combined with local search approaches.
arXiv Detail & Related papers (2020-09-02T06:39:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.