Physics-based parameterized neural ordinary differential equations:
prediction of laser ignition in a rocket combustor
- URL: http://arxiv.org/abs/2302.08629v2
- Date: Wed, 3 May 2023 22:48:06 GMT
- Title: Physics-based parameterized neural ordinary differential equations:
prediction of laser ignition in a rocket combustor
- Authors: Yizhou Qian, Jonathan Wang, Quentin Douasbin, Eric Darve
- Abstract summary: We present a physics-based data-driven framework for reduced-order modeling of laser ignition in a model rocket combustor.
Deep neural networks are embedded as functions of high-dimensional parameters of laser ignition to predict various terms in a 0D flow model.
- Score: 2.227105438439618
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we present a novel physics-based data-driven framework for
reduced-order modeling of laser ignition in a model rocket combustor based on
parameterized neural ordinary differential equations (PNODE). Deep neural
networks are embedded as functions of high-dimensional parameters of laser
ignition to predict various terms in a 0D flow model including the heat source
function, pre-exponential factors, and activation energy. Using the governing
equations of a 0D flow model, our PNODE needs only a limited number of training
samples and predicts trajectories of various quantities such as temperature,
pressure, and mass fractions of species while satisfying physical constraints.
We validate our physics-based PNODE on solution snapshots of high-fidelity
Computational Fluid Dynamics (CFD) simulations of laser-induced ignition in a
prototype rocket combustor. We compare the performance of our physics-based
PNODE with that of kernel ridge regression and fully connected neural networks.
Our results show that our physics-based PNODE provides solutions with lower
mean absolute errors of average temperature over time, thus improving the
prediction of successful laser ignition with high-dimensional parameters.
Related papers
- Liquid Fourier Latent Dynamics Networks for fast GPU-based numerical simulations in computational cardiology [0.0]
We propose an extension of Latent Dynamics Networks (LDNets) to create parameterized space-time surrogate models for multiscale and multiphysics sets of highly nonlinear differential equations on complex geometries.
LFLDNets employ a neurologically-inspired, sparse liquid neural network for temporal dynamics, relaxing the requirement of a numerical solver for time advancement and leading to superior performance in terms of parameters, accuracy, efficiency and learned trajectories.
arXiv Detail & Related papers (2024-08-19T09:14:25Z) - Deep Neural Operator Enabled Digital Twin Modeling for Additive Manufacturing [9.639126204112937]
A digital twin (DT) behaves as a virtual twin of the real-world physical process.
We present a deep neural operator enabled computational framework of the DT for closed-loop feedback control of the L-PBF process.
The developed DT is envisioned to guide the AM process and facilitate high-quality manufacturing.
arXiv Detail & Related papers (2024-05-13T03:53:46Z) - Hybridizing Physics and Neural ODEs for Predicting Plasma Inductance
Dynamics in Tokamak Fusion Reactors [0.0]
We train both physics-based and neural network models on data from the Alcator C-Mod fusion reactor.
We find that a model that combines physics-based equations with a neural ODE performs better than both existing physics-motivated ODEs and a pure neural ODE model.
arXiv Detail & Related papers (2023-10-30T23:25:54Z) - Physics-Informed Machine Learning of Argon Gas-Driven Melt Pool Dynamics [0.0]
Melt pool dynamics in metal additive manufacturing (AM) is critical to process stability, microstructure formation, and final properties of the printed materials.
This paper provides a physics-informed machine learning (PIML) method by integrating neural networks with the governing physical laws to predict the melt pool dynamics.
The data-efficient PINN model is attributed to the soft penalty by incorporating governing partial differential equations (PDEs), initial conditions, and boundary conditions in the PINN model.
arXiv Detail & Related papers (2023-07-23T12:12:44Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
This paper proposes a general acceleration methodology called NeuralStagger.
It decomposing the original learning tasks into several coarser-resolution subtasks.
We demonstrate the successful application of NeuralStagger on 2D and 3D fluid dynamics simulations.
arXiv Detail & Related papers (2023-02-20T19:36:52Z) - A predictive physics-aware hybrid reduced order model for reacting flows [65.73506571113623]
A new hybrid predictive Reduced Order Model (ROM) is proposed to solve reacting flow problems.
The number of degrees of freedom is reduced from thousands of temporal points to a few POD modes with their corresponding temporal coefficients.
Two different deep learning architectures have been tested to predict the temporal coefficients.
arXiv Detail & Related papers (2023-01-24T08:39:20Z) - NeurOLight: A Physics-Agnostic Neural Operator Enabling Parametric
Photonic Device Simulation [17.295318670037886]
A physics-agnostic neural framework, dubbed NeurOLight, is proposed to learn a family of frequency-domain Maxwell PDEs for ultra-fast parametric photonic device simulation.
We show that NeurOLight generalizes to a large space of unseen simulation settings, demonstrates 2-orders-of-magnitude faster simulation speed than numerical solvers, and outperforms prior neural network models by 54% lower prediction error with 44% fewer parameters.
arXiv Detail & Related papers (2022-09-19T21:25:26Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
We propose an approach to solving partial differential equations (PDEs) using a set of neural networks.
We regress a set of neural networks onto a reduced order Proper Orthogonal Decomposition (POD) basis.
These networks are then used in combination with a branch network that ingests the parameters of the prescribed PDE to compute a reduced order approximation to the PDE.
arXiv Detail & Related papers (2022-08-02T18:27:13Z) - Physics Informed RNN-DCT Networks for Time-Dependent Partial
Differential Equations [62.81701992551728]
We present a physics-informed framework for solving time-dependent partial differential equations.
Our model utilizes discrete cosine transforms to encode spatial and recurrent neural networks.
We show experimental results on the Taylor-Green vortex solution to the Navier-Stokes equations.
arXiv Detail & Related papers (2022-02-24T20:46:52Z) - Physics-constrained deep neural network method for estimating parameters
in a redox flow battery [68.8204255655161]
We present a physics-constrained deep neural network (PCDNN) method for parameter estimation in the zero-dimensional (0D) model of the vanadium flow battery (VRFB)
We show that the PCDNN method can estimate model parameters for a range of operating conditions and improve the 0D model prediction of voltage.
We also demonstrate that the PCDNN approach has an improved generalization ability for estimating parameter values for operating conditions not used in the training.
arXiv Detail & Related papers (2021-06-21T23:42:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.