Deep Neural Operator Enabled Digital Twin Modeling for Additive Manufacturing
- URL: http://arxiv.org/abs/2405.09572v1
- Date: Mon, 13 May 2024 03:53:46 GMT
- Title: Deep Neural Operator Enabled Digital Twin Modeling for Additive Manufacturing
- Authors: Ning Liu, Xuxiao Li, Manoj R. Rajanna, Edward W. Reutzel, Brady Sawyer, Prahalada Rao, Jim Lua, Nam Phan, Yue Yu,
- Abstract summary: A digital twin (DT) behaves as a virtual twin of the real-world physical process.
We present a deep neural operator enabled computational framework of the DT for closed-loop feedback control of the L-PBF process.
The developed DT is envisioned to guide the AM process and facilitate high-quality manufacturing.
- Score: 9.639126204112937
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: A digital twin (DT), with the components of a physics-based model, a data-driven model, and a machine learning (ML) enabled efficient surrogate, behaves as a virtual twin of the real-world physical process. In terms of Laser Powder Bed Fusion (L-PBF) based additive manufacturing (AM), a DT can predict the current and future states of the melt pool and the resulting defects corresponding to the input laser parameters, evolve itself by assimilating in-situ sensor data, and optimize the laser parameters to mitigate defect formation. In this paper, we present a deep neural operator enabled computational framework of the DT for closed-loop feedback control of the L-PBF process. This is accomplished by building a high-fidelity computational model to accurately represent the melt pool states, an efficient surrogate model to approximate the melt pool solution field, followed by an physics-based procedure to extract information from the computed melt pool simulation that can further be correlated to the defect quantities of interest (e.g., surface roughness). In particular, we leverage the data generated from the high-fidelity physics-based model and train a series of Fourier neural operator (FNO) based ML models to effectively learn the relation between the input laser parameters and the corresponding full temperature field of the melt pool. Subsequently, a set of physics-informed variables such as the melt pool dimensions and the peak temperature can be extracted to compute the resulting defects. An optimization algorithm is then exercised to control laser input and minimize defects. On the other hand, the constructed DT can also evolve with the physical twin via offline finetuning and online material calibration. Finally, a probabilistic framework is adopted for uncertainty quantification. The developed DT is envisioned to guide the AM process and facilitate high-quality manufacturing.
Related papers
- Integrating Multi-Physics Simulations and Machine Learning to Define the Spatter Mechanism and Process Window in Laser Powder Bed Fusion [6.024307115154315]
In this work, we investigate mechanism of spatter formation, using a high-fidelity modelling tool that was built to simulate the multi-physics phenomena in LPBF.
To understand spatter behavior and formation, we reveal its properties at ejection and evaluate its variation from the meltpool, the source where it is formed.
The relationship between the spatter and the meltpool were evaluated via correlation analysis and machine learning (ML) algorithms for classification tasks.
arXiv Detail & Related papers (2024-05-13T15:08:02Z) - Multi-fidelity surrogate with heterogeneous input spaces for modeling melt pools in laser-directed energy deposition [0.0]
Multi-fidelity (MF) modeling is a powerful statistical approach that can intelligently blend data from varied fidelity sources.
One major challenge in using MF surrogates to merge a hierarchy of melt pool models is the variability in input spaces.
This paper introduces a novel approach for constructing an MF surrogate for predicting melt pool geometry by integrating models of varying complexity.
arXiv Detail & Related papers (2024-03-19T20:12:46Z) - Statistical Parameterized Physics-Based Machine Learning Digital Twin
Models for Laser Powder Bed Fusion Process [9.182594748320948]
A digital twin (DT) is a virtual representation of physical process, products and/or systems.
This paper introduces a parameterized physics-based digital twin (PPB-DT) for the statistical predictions of LPBF metal additive manufacturing process.
We have trained a machine learning-based digital twin (PPB-ML-DT) model for predicting, monitoring, and controlling melt pool geometries.
arXiv Detail & Related papers (2023-11-14T00:45:53Z) - Physics-Informed Machine Learning of Argon Gas-Driven Melt Pool Dynamics [0.0]
Melt pool dynamics in metal additive manufacturing (AM) is critical to process stability, microstructure formation, and final properties of the printed materials.
This paper provides a physics-informed machine learning (PIML) method by integrating neural networks with the governing physical laws to predict the melt pool dynamics.
The data-efficient PINN model is attributed to the soft penalty by incorporating governing partial differential equations (PDEs), initial conditions, and boundary conditions in the PINN model.
arXiv Detail & Related papers (2023-07-23T12:12:44Z) - Physics-based parameterized neural ordinary differential equations:
prediction of laser ignition in a rocket combustor [2.227105438439618]
We present a physics-based data-driven framework for reduced-order modeling of laser ignition in a model rocket combustor.
Deep neural networks are embedded as functions of high-dimensional parameters of laser ignition to predict various terms in a 0D flow model.
arXiv Detail & Related papers (2023-02-16T23:56:51Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
We propose a Monte Carlo PDE solver for training unsupervised neural solvers.
We use the PDEs' probabilistic representation, which regards macroscopic phenomena as ensembles of random particles.
Our experiments on convection-diffusion, Allen-Cahn, and Navier-Stokes equations demonstrate significant improvements in accuracy and efficiency.
arXiv Detail & Related papers (2023-02-10T08:05:19Z) - An Adversarial Active Sampling-based Data Augmentation Framework for
Manufacturable Chip Design [55.62660894625669]
Lithography modeling is a crucial problem in chip design to ensure a chip design mask is manufacturable.
Recent developments in machine learning have provided alternative solutions in replacing the time-consuming lithography simulations with deep neural networks.
We propose a litho-aware data augmentation framework to resolve the dilemma of limited data and improve the machine learning model performance.
arXiv Detail & Related papers (2022-10-27T20:53:39Z) - Physics-informed machine learning with differentiable programming for
heterogeneous underground reservoir pressure management [64.17887333976593]
Avoiding over-pressurization in subsurface reservoirs is critical for applications like CO2 sequestration and wastewater injection.
Managing the pressures by controlling injection/extraction are challenging because of complex heterogeneity in the subsurface.
We use differentiable programming with a full-physics model and machine learning to determine the fluid extraction rates that prevent over-pressurization.
arXiv Detail & Related papers (2022-06-21T20:38:13Z) - Enhanced physics-constrained deep neural networks for modeling vanadium
redox flow battery [62.997667081978825]
We propose an enhanced version of the physics-constrained deep neural network (PCDNN) approach to provide high-accuracy voltage predictions.
The ePCDNN can accurately capture the voltage response throughout the charge--discharge cycle, including the tail region of the voltage discharge curve.
arXiv Detail & Related papers (2022-03-03T19:56:24Z) - MoEfication: Conditional Computation of Transformer Models for Efficient
Inference [66.56994436947441]
Transformer-based pre-trained language models can achieve superior performance on most NLP tasks due to large parameter capacity, but also lead to huge computation cost.
We explore to accelerate large-model inference by conditional computation based on the sparse activation phenomenon.
We propose to transform a large model into its mixture-of-experts (MoE) version with equal model size, namely MoEfication.
arXiv Detail & Related papers (2021-10-05T02:14:38Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
Solving partial differential equations (PDE) is an indispensable part of many branches of science as many processes can be modelled in terms of PDEs.
Recent numerical solvers require manual discretization of the underlying equation as well as sophisticated, tailored code for distributed computing.
We examine the applicability of continuous, mesh-free neural solvers for partial differential equations, physics-informed neural networks (PINNs)
We discuss the accuracy of GatedPINN with respect to analytical solutions -- as well as state-of-the-art numerical solvers, such as spectral solvers.
arXiv Detail & Related papers (2020-09-08T13:26:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.