Physics-informed graph neural networks for flow field estimation in carotid arteries
- URL: http://arxiv.org/abs/2408.07110v1
- Date: Tue, 13 Aug 2024 13:09:28 GMT
- Title: Physics-informed graph neural networks for flow field estimation in carotid arteries
- Authors: Julian Suk, Dieuwertje Alblas, Barbara A. Hutten, Albert Wiegman, Christoph Brune, Pim van Ooij, Jelmer M. Wolterink,
- Abstract summary: Hemodynamic quantities are valuable biomedical risk factors for cardiovascular pathology such as atherosclerosis.
In this work, we create a surrogate model for hemodynamic flow field estimation, powered by machine learning.
We train graph neural networks that include priors about the underlying symmetries and physics, limiting the amount of data required for training.
This shows that physics-informed graph neural networks can be trained using 4D flow MRI data to estimate blood flow in unseen carotid artery geometries.
- Score: 2.0437999068326276
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hemodynamic quantities are valuable biomedical risk factors for cardiovascular pathology such as atherosclerosis. Non-invasive, in-vivo measurement of these quantities can only be performed using a select number of modalities that are not widely available, such as 4D flow magnetic resonance imaging (MRI). In this work, we create a surrogate model for hemodynamic flow field estimation, powered by machine learning. We train graph neural networks that include priors about the underlying symmetries and physics, limiting the amount of data required for training. This allows us to train the model using moderately-sized, in-vivo 4D flow MRI datasets, instead of large in-silico datasets obtained by computational fluid dynamics (CFD), as is the current standard. We create an efficient, equivariant neural network by combining the popular PointNet++ architecture with group-steerable layers. To incorporate the physics-informed priors, we derive an efficient discretisation scheme for the involved differential operators. We perform extensive experiments in carotid arteries and show that our model can accurately estimate low-noise hemodynamic flow fields in the carotid artery. Moreover, we show how the learned relation between geometry and hemodynamic quantities transfers to 3D vascular models obtained using a different imaging modality than the training data. This shows that physics-informed graph neural networks can be trained using 4D flow MRI data to estimate blood flow in unseen carotid artery geometries.
Related papers
- Trajectory Flow Matching with Applications to Clinical Time Series Modeling [77.58277281319253]
Trajectory Flow Matching (TFM) trains a Neural SDE in a simulation-free manner, bypassing backpropagation through the dynamics.
We demonstrate improved performance on three clinical time series datasets in terms of absolute performance and uncertainty prediction.
arXiv Detail & Related papers (2024-10-28T15:54:50Z) - Deep vectorised operators for pulsatile hemodynamics estimation in coronary arteries from a steady-state prior [2.3971720731010766]
We propose a time-efficient surrogate model, powered by machine learning, for the estimation of pulsatile hemodynamics.
We show that our model produces accurate estimates of the pulsatile velocity and pressure while being agnostic to re-sampling of the source domain.
arXiv Detail & Related papers (2024-10-15T12:24:50Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
In this study, we first construct the brain-effective network via the dynamic causal model.
We then introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE)
This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic interplay between structural and effective networks.
arXiv Detail & Related papers (2024-05-21T20:37:07Z) - Learning Reduced-Order Models for Cardiovascular Simulations with Graph
Neural Networks [1.2643625859899612]
We develop one-dimensional reduced-order models that simulate blood flow dynamics using a graph neural network trained on three-dimensional hemodynamic simulation data.
Our method exhibits superior performance compared to physics-based one-dimensional models, while maintaining high efficiency at inference time.
arXiv Detail & Related papers (2023-03-13T17:32:46Z) - SE(3) symmetry lets graph neural networks learn arterial velocity
estimation from small datasets [3.861633648502351]
Hemodynamic velocity fields in coronary arteries could be the basis of valuable biomarkers for diagnosis, prognosis and treatment planning.
Velocity fields are typically obtained from patient-specific 3D artery models via computational fluid dynamics (CFD)
We propose graph neural networks (GNN) as an efficient black-box surrogate method to estimate 3D velocity fields.
arXiv Detail & Related papers (2023-02-17T09:42:38Z) - Mesh Neural Networks for SE(3)-Equivariant Hemodynamics Estimation on the Artery Wall [13.113110989699571]
We consider the estimation of vector-valued quantities on the wall of three-dimensional geometric artery models.
We employ group equivariant graph convolution in an end-to-end SE(3)-equivariant neural network that operates directly on triangular surface meshes.
We show that our method is powerful enough to accurately predict transient, vector-valued WSS over the cardiac cycle while conditioned on a range of different inflow boundary conditions.
arXiv Detail & Related papers (2022-12-09T18:16:06Z) - DynDepNet: Learning Time-Varying Dependency Structures from fMRI Data
via Dynamic Graph Structure Learning [58.94034282469377]
We propose DynDepNet, a novel method for learning the optimal time-varying dependency structure of fMRI data induced by downstream prediction tasks.
Experiments on real-world fMRI datasets, for the task of sex classification, demonstrate that DynDepNet achieves state-of-the-art results.
arXiv Detail & Related papers (2022-09-27T16:32:11Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Machine-Learning Identification of Hemodynamics in Coronary Arteries in
the Presence of Stenosis [0.0]
An artificial neural network (ANN) model is trained using synthetic data to predict the pressure and velocity within the arterial network.
The efficiency of the model was verified using three real geometries of LAD's vessels.
arXiv Detail & Related papers (2021-11-02T23:51:06Z) - Simultaneous boundary shape estimation and velocity field de-noising in
Magnetic Resonance Velocimetry using Physics-informed Neural Networks [70.7321040534471]
Magnetic resonance velocimetry (MRV) is a non-invasive technique widely used in medicine and engineering to measure the velocity field of a fluid.
Previous studies have required the shape of the boundary (for example, a blood vessel) to be known a priori.
We present a physics-informed neural network that instead uses the noisy MRV data alone to infer the most likely boundary shape and de-noised velocity field.
arXiv Detail & Related papers (2021-07-16T12:56:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.