Deep comparisons of Neural Networks from the EEGNet family
- URL: http://arxiv.org/abs/2302.08797v1
- Date: Fri, 17 Feb 2023 10:39:09 GMT
- Title: Deep comparisons of Neural Networks from the EEGNet family
- Authors: Csaba M\'arton K\"oll\H{o}d, Andr\'as Adolf, Gergely M\'arton,
Istv\'an Ulbert
- Abstract summary: We compared 5 well-known neural networks (Shallow ConvNet, Deep ConvNet, EEGNet, EEGNet Fusion, MI-EEGNet) using open-access databases with many subjects next to the BCI Competition 4 2a dataset.
Our metrics showed that the researchers should not avoid Shallow ConvNet and Deep ConvNet because they can perform better than the later published ones from the EEGNet family.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Most of the Brain-Computer Interface (BCI) publications, which propose
artificial neural networks for Motor Imagery (MI) Electroencephalography (EEG)
signal classification, are presented using one of the BCI Competition datasets.
However, these databases contain MI EEG data from less than or equal to 10
subjects . In addition, these algorithms usually include only bandpass
filtering to reduce noise and increase signal quality. In this article, we
compared 5 well-known neural networks (Shallow ConvNet, Deep ConvNet, EEGNet,
EEGNet Fusion, MI-EEGNet) using open-access databases with many subjects next
to the BCI Competition 4 2a dataset to acquire statistically significant
results. We removed artifacts from the EEG using the FASTER algorithm as a
signal processing step. Moreover, we investigated whether transfer learning can
further improve the classification results on artifact filtered data. We aimed
to rank the neural networks; therefore, next to the classification accuracy, we
introduced two additional metrics: the accuracy improvement from chance level
and the effect of transfer learning. The former can be used with different
class-numbered databases, while the latter can highlight neural networks with
sufficient generalization abilities. Our metrics showed that the researchers
should not avoid Shallow ConvNet and Deep ConvNet because they can perform
better than the later published ones from the EEGNet family.
Related papers
- EEG-BBNet: a Hybrid Framework for Brain Biometric using Graph
Connectivity [1.1498015270151059]
We present EEG-BBNet, a hybrid network which integrates convolutional neural networks (CNN) with graph convolutional neural networks (GCNN)
Our models outperform all baselines in the event-related potential (ERP) task with an average correct recognition rates up to 99.26% using intra-session data.
arXiv Detail & Related papers (2022-08-17T10:18:22Z) - EEG-ITNet: An Explainable Inception Temporal Convolutional Network for
Motor Imagery Classification [0.5616884466478884]
We propose an end-to-end deep learning architecture called EEG-ITNet.
Our model can extract rich spectral, spatial, and temporal information from multi-channel EEG signals.
EEG-ITNet shows up to 5.9% improvement in the classification accuracy in different scenarios.
arXiv Detail & Related papers (2022-04-14T13:18:43Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
We propose SignalNet, a neural network architecture that detects the number of sinusoids and estimates their parameters from quantized in-phase and quadrature samples.
We introduce a worst-case learning threshold for comparing the results of our network relative to the underlying data distributions.
In simulation, we find that our algorithm is always able to surpass the threshold for three-bit data but often cannot exceed the threshold for one-bit data.
arXiv Detail & Related papers (2021-06-10T04:21:20Z) - Classification of Motor Imagery EEG Signals by Using a Divergence Based
Convolutional Neural Network [0.0]
It is observed that the augmentation process is not applied for increasing the classification performance of EEG signals.
In this study, we have investigated the effect of the augmentation process on the classification performance of MI EEG signals.
arXiv Detail & Related papers (2021-03-19T18:27:28Z) - Inter-subject Deep Transfer Learning for Motor Imagery EEG Decoding [1.933681537640272]
Convolutional neural networks (CNNs) have become a powerful technique to decode EEG.
It is still challenging to train CNNs on multiple subjects' EEG without decreasing individual performance.
We propose a multi-branch deep transfer network based on splitting the network's feature extractors for individual subjects.
arXiv Detail & Related papers (2021-03-09T11:01:02Z) - S2-BNN: Bridging the Gap Between Self-Supervised Real and 1-bit Neural
Networks via Guided Distribution Calibration [74.5509794733707]
We present a novel guided learning paradigm from real-valued to distill binary networks on the final prediction distribution.
Our proposed method can boost the simple contrastive learning baseline by an absolute gain of 5.515% on BNNs.
Our method achieves substantial improvement over the simple contrastive learning baseline, and is even comparable to many mainstream supervised BNN methods.
arXiv Detail & Related papers (2021-02-17T18:59:28Z) - EEG-Inception: An Accurate and Robust End-to-End Neural Network for
EEG-based Motor Imagery Classification [123.93460670568554]
This paper proposes a novel convolutional neural network (CNN) architecture for accurate and robust EEG-based motor imagery (MI) classification.
The proposed CNN model, namely EEG-Inception, is built on the backbone of the Inception-Time network.
The proposed network is an end-to-end classification, as it takes the raw EEG signals as the input and does not require complex EEG signal-preprocessing.
arXiv Detail & Related papers (2021-01-24T19:03:10Z) - Emotional EEG Classification using Connectivity Features and
Convolutional Neural Networks [81.74442855155843]
We introduce a new classification system that utilizes brain connectivity with a CNN and validate its effectiveness via the emotional video classification.
The level of concentration of the brain connectivity related to the emotional property of the target video is correlated with classification performance.
arXiv Detail & Related papers (2021-01-18T13:28:08Z) - Binary Graph Neural Networks [69.51765073772226]
Graph Neural Networks (GNNs) have emerged as a powerful and flexible framework for representation learning on irregular data.
In this paper, we present and evaluate different strategies for the binarization of graph neural networks.
We show that through careful design of the models, and control of the training process, binary graph neural networks can be trained at only a moderate cost in accuracy on challenging benchmarks.
arXiv Detail & Related papers (2020-12-31T18:48:58Z) - Solving Mixed Integer Programs Using Neural Networks [57.683491412480635]
This paper applies learning to the two key sub-tasks of a MIP solver, generating a high-quality joint variable assignment, and bounding the gap in objective value between that assignment and an optimal one.
Our approach constructs two corresponding neural network-based components, Neural Diving and Neural Branching, to use in a base MIP solver such as SCIP.
We evaluate our approach on six diverse real-world datasets, including two Google production datasets and MIPLIB, by training separate neural networks on each.
arXiv Detail & Related papers (2020-12-23T09:33:11Z) - Transfer Learning and SpecAugment applied to SSVEP Based BCI
Classification [1.9336815376402716]
We use deep convolutional neural networks (DCNNs) to classify EEG signals in a single-channel brain-computer interface (BCI)
EEG signals were converted to spectrograms and served as input to train DCNNs using the transfer learning technique.
arXiv Detail & Related papers (2020-10-08T00:30:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.