論文の概要: AliasNet: Alias Artefact Suppression Network for Accelerated
Phase-Encode MRI
- arxiv url: http://arxiv.org/abs/2302.08861v2
- Date: Tue, 10 Oct 2023 07:38:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-13 14:48:26.663209
- Title: AliasNet: Alias Artefact Suppression Network for Accelerated
Phase-Encode MRI
- Title(参考訳): AliasNet: Alias Artefact Suppression Network for Accelerated Phase-Encode MRI
- Authors: Marlon E. Bran Lorenzana, Shekhar S. Chandra and Feng Liu
- Abstract要約: スパース再構成はMRIの重要な側面であり、取得時間を短縮し、空間時間分解能を改善するのに役立つ。
1D AliasNetモジュールと既存の2Dディープラーニング(DL)リカバリ技術を組み合わせることで、画像の品質が向上することが実証された。
- 参考スコア(独自算出の注目度): 4.752084030395196
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sparse reconstruction is an important aspect of MRI, helping to reduce
acquisition time and improve spatial-temporal resolution. Popular methods are
based mostly on compressed sensing (CS), which relies on the random sampling of
k-space to produce incoherent (noise-like) artefacts. Due to hardware
constraints, 1D Cartesian phase-encode under-sampling schemes are popular for
2D CS-MRI. However, 1D under-sampling limits 2D incoherence between
measurements, yielding structured aliasing artefacts (ghosts) that may be
difficult to remove assuming a 2D sparsity model. Reconstruction algorithms
typically deploy direction-insensitive 2D regularisation for these
direction-associated artefacts. Recognising that phase-encode artefacts can be
separated into contiguous 1D signals, we develop two decoupling techniques that
enable explicit 1D regularisation and leverage the excellent 1D incoherence
characteristics. We also derive a combined 1D + 2D reconstruction technique
that takes advantage of spatial relationships within the image. Experiments
conducted on retrospectively under-sampled brain and knee data demonstrate that
combination of the proposed 1D AliasNet modules with existing 2D deep learned
(DL) recovery techniques leads to an improvement in image quality. We also find
AliasNet enables a superior scaling of performance compared to increasing the
size of the original 2D network layers. AliasNet therefore improves the
regularisation of aliasing artefacts arising from phase-encode under-sampling,
by tailoring the network architecture to account for their expected appearance.
The proposed 1D + 2D approach is compatible with any existing 2D DL recovery
technique deployed for this application.
- Abstract(参考訳): スパース再構成はMRIの重要な側面であり、取得時間を短縮し、空間時間分解能を改善するのに役立つ。
一般的な手法は主に圧縮センシング(CS)に基づいており、これはk空間をランダムにサンプリングして非コヒーレントな(ノイズのような)アーティファクトを生成する。
ハードウェアの制約により、1Dカルト位相エンコードアンダーサンプリングスキームは2D CS-MRIに人気がある。
しかし、1次元アンダーサンプリングは測定値間の2次元の一貫性を制限し、2次元スパーシティモデルを仮定すると取り除くのが難しい構造的なエイリアシングアーティファクト(ghost)を生成する。
レコンストラクションアルゴリズムは通常、これらの方向関連アーティファクトに対して方向非感受性の2次元正則化を展開する。
位相エンコードアーチファクトを連続した1D信号に分割できることを認識し, 明示的な1D正規化を可能にし, 優れた1D不整合特性を利用する2つのデカップリング技術を開発した。
また,画像内の空間的関係を活かした1次元+2次元再構成手法も提案する。
脳と膝のデータをふりかえりにサンプリングした実験では、提案された1d aliasnetモジュールと既存の2d deep learn (dl)リカバリ技術の組み合わせが、画像品質の向上に繋がることを示している。
また、AliasNetは元の2Dネットワーク層のサイズを拡大するよりもパフォーマンスのスケーリングが優れていることもわかりました。
したがって、aliasnetは、ネットワークアーキテクチャをその期待される外観に合わせて調整することで、フェーズエンコードによるアンダーサンプリングから生じるエイリアシングアーティファクトの規則化を改善している。
提案した1D + 2Dアプローチは、既存の2D DLリカバリ技術と互換性がある。
関連論文リスト
- Coarse-Fine Spectral-Aware Deformable Convolution For Hyperspectral Image Reconstruction [15.537910100051866]
Coded Aperture Snapshot Spectral Imaging (CASSI) の逆問題について検討する。
粗面スペクトル対応変形性畳み込みネットワーク(CFSDCN)を提案する。
我々のCFSDCNは、シミュレーションされたHSIデータセットと実際のHSIデータセットの両方において、従来の最先端(SOTA)メソッドよりも大幅に優れています。
論文 参考訳(メタデータ) (2024-06-18T15:15:12Z) - Scalable Non-Cartesian Magnetic Resonance Imaging with R2D2 [6.728969294264806]
本研究では,非電子磁気共鳴画像再構成のための新しい手法を提案する。
我々は「Residual to-Residual DNN series for high range imaging (R2D2)」を利用する。
論文 参考訳(メタデータ) (2024-03-26T17:45:06Z) - The R2D2 deep neural network series paradigm for fast precision imaging in radio astronomy [1.7249361224827533]
最近の画像再構成技術は、CLEANの能力をはるかに超えて、画像の精度が著しく向上している。
高ダイナミックレンジイメージングのためのResidual-to-Residual DNNシリーズと呼ばれる新しいディープラーニング手法を導入する。
高精度を実現するためのR2D2の能力は、超大型アレイ(VLA)を用いた様々な画像観測環境においてシミュレーションで実証されている。
論文 参考訳(メタデータ) (2024-03-08T16:57:54Z) - StableDreamer: Taming Noisy Score Distillation Sampling for Text-to-3D [88.66678730537777]
本稿では3つの進歩を取り入れた方法論であるStableDreamerを紹介する。
まず、SDS生成前の等価性と、簡単な教師付きL2再構成損失を定式化する。
第2に,画像空間拡散は幾何学的精度に寄与するが,色調の鮮明化には潜時空間拡散が不可欠であることを示す。
論文 参考訳(メタデータ) (2023-12-02T02:27:58Z) - JOTR: 3D Joint Contrastive Learning with Transformers for Occluded Human
Mesh Recovery [84.67823511418334]
本稿では,3次元メッシュ復元のためのTRansformersフレームワークを用いた3次元ジョイントコントラスト学習について述べる。
提案手法は,2D$&$3D対応結果を得るために,2Dおよび3D表現を融合するエンコーダ・デコーダ変換器アーキテクチャを含む。
論文 参考訳(メタデータ) (2023-07-31T02:58:58Z) - NeRF-GAN Distillation for Efficient 3D-Aware Generation with
Convolutions [97.27105725738016]
GAN(Generative Adversarial Networks)のようなニューラルラジアンスフィールド(NeRF)と生成モデルの統合は、単一ビュー画像から3D認識生成を変換した。
提案手法は,ポーズ条件付き畳み込みネットワークにおいて,事前学習したNeRF-GANの有界遅延空間を再利用し,基礎となる3次元表現に対応する3D一貫性画像を直接生成する手法である。
論文 参考訳(メタデータ) (2023-03-22T18:59:48Z) - Joint-MAE: 2D-3D Joint Masked Autoencoders for 3D Point Cloud
Pre-training [65.75399500494343]
Masked Autoencoders (MAE) は、2Dおよび3Dコンピュータビジョンのための自己教師型学習において有望な性能を示した。
自己監督型3次元点雲事前学習のための2D-3DジョイントMAEフレームワークであるJoint-MAEを提案する。
論文 参考訳(メタデータ) (2023-02-27T17:56:18Z) - Deep-MDS Framework for Recovering the 3D Shape of 2D Landmarks from a
Single Image [8.368476827165114]
本稿では,人間の顔上の2次元ランドマークの3次元形状を,単一の入力画像で再現する枠組みを提案する。
ディープニューラルネットワークは、NMDSアプローチで使用される2Dランドマーク間のペアの相似性を学習する。
論文 参考訳(メタデータ) (2022-10-27T06:20:10Z) - Degradation-Aware Unfolding Half-Shuffle Transformer for Spectral
Compressive Imaging [142.11622043078867]
圧縮画像と物理マスクからパラメータを推定し,これらのパラメータを用いて各イテレーションを制御する,DAUF(Degradation-Aware Unfolding Framework)を提案する。
HST を DAUF に接続することにより,HSI 再構成のための変換器の深部展開法であるデグレーション・アウェア・アンフォールディング・ハーフシャッフル変換器 (DAUHST) を確立した。
論文 参考訳(メタデータ) (2022-05-20T11:37:44Z) - Multi-initialization Optimization Network for Accurate 3D Human Pose and
Shape Estimation [75.44912541912252]
我々はMulti-Initialization Optimization Network(MION)という3段階のフレームワークを提案する。
第1段階では,入力サンプルの2次元キーポイントに適合する粗い3次元再構成候補を戦略的に選択する。
第2段階では, メッシュ改質トランス (MRT) を設計し, 自己保持機構を用いて粗い再構成結果をそれぞれ洗練する。
最後に,RGB画像の視覚的証拠が与えられた3次元再構成と一致するかどうかを評価することで,複数の候補から最高の結果を得るために,一貫性推定ネットワーク(CEN)を提案する。
論文 参考訳(メタデータ) (2021-12-24T02:43:58Z) - One-dimensional Deep Low-rank and Sparse Network for Accelerated MRI [19.942978606567547]
核磁気共鳴画像(MRI)における深層学習の驚くべき性能
最先端のディープラーニング再構築の多くは、強力な畳み込みニューラルネットワークを採用し、2D畳み込みを行う。
我々は1次元の畳み込みを探求する新しいアプローチを提案し、深層ネットワークの訓練と一般化をより容易にする。
論文 参考訳(メタデータ) (2021-12-09T06:39:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。