論文の概要: Scalable Non-Cartesian Magnetic Resonance Imaging with R2D2
- arxiv url: http://arxiv.org/abs/2403.17905v3
- Date: Tue, 28 May 2024 10:02:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 00:59:19.205772
- Title: Scalable Non-Cartesian Magnetic Resonance Imaging with R2D2
- Title(参考訳): R2D2を用いたスケーラブル非カルテシアン磁気共鳴イメージング
- Authors: Yiwei Chen, Chao Tang, Amir Aghabiglou, Chung San Chu, Yves Wiaux,
- Abstract要約: 本研究では,非電子磁気共鳴画像再構成のための新しい手法を提案する。
我々は「Residual to-Residual DNN series for high range imaging (R2D2)」を利用する。
- 参考スコア(独自算出の注目度): 6.728969294264806
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a new approach for non-Cartesian magnetic resonance image reconstruction. While unrolled architectures provide robustness via data-consistency layers, embedding measurement operators in Deep Neural Network (DNN) can become impractical at large scale. Alternative Plug-and-Play (PnP) approaches, where the denoising DNNs are blind to the measurement setting, are not affected by this limitation and have also proven effective, but their highly iterative nature also affects scalability. To address this scalability challenge, we leverage the "Residual-to-Residual DNN series for high-Dynamic range imaging (R2D2)" approach recently introduced in astronomical imaging. R2D2's reconstruction is formed as a series of residual images, iteratively estimated as outputs of DNNs taking the previous iteration's image estimate and associated data residual as inputs. The method can be interpreted as a learned version of the Matching Pursuit algorithm. We demonstrate R2D2 in simulation, considering radial k-space sampling acquisition sequences. Our preliminary results suggest that R2D2 achieves: (i) suboptimal performance compared to its unrolled incarnation R2D2-Net, which is however non-scalable due to the necessary embedding of NUFFT-based data-consistency layers; (ii) superior reconstruction quality to a scalable version of R2D2-Net embedding an FFT-based approximation for data consistency; (iii) superior reconstruction quality to PnP, while only requiring few iterations.
- Abstract(参考訳): 非カルテシアン磁気共鳴画像再構成のための新しい手法を提案する。
アンロールアーキテクチャはデータ一貫性レイヤを介して堅牢性を提供するが、ディープニューラルネットワーク(DNN)に計測演算子を埋め込むことは、大規模に非現実的になる可能性がある。
代替的なPlug-and-Play(PnP)アプローチでは、DNNは測定環境に不自由であり、この制限の影響を受けず、有効性も証明されているが、その高い反復性はスケーラビリティにも影響を及ぼす。
このスケーラビリティ問題に対処するために、最近天文学的イメージングで導入された「Residual-to-Residual DNNシリーズ」を高ダイナミックレンジイメージング(R2D2)に活用する。
R2D2の再構成は一連の残像として形成され、前回の繰り返しの画像推定と関連するデータを入力として取り込んだDNNの出力として反復的に推定される。
この方法はMatching Pursuitアルゴリズムの学習版と解釈できる。
我々は、ラジアルk空間サンプリング取得シーケンスを考慮したシミュレーションでR2D2を実証する。
我々の予備的な結果は、R2D2が達成できることを示唆している。
(i) NUFFT ベースのデータ一貫性層を組み込む必要により,R2D2-Net は拡張不可能である。
(II)データ一貫性のためのFFTに基づく近似を組み込んだR2D2-Netのスケーラブル版に優れた再構成品質
(3)PnPの再現性は優れているが、イテレーションは少ない。
関連論文リスト
- R2D2 image reconstruction with model uncertainty quantification in radio astronomy [1.7249361224827533]
Residual-to-Residual'(R2D2)アプローチは、天文学におけるRI(Radio-Interferometric)イメージングのために最近導入された。
R2D2の再構成は、ディープニューラルネットワーク(DNN)の出力として反復的に推定される一連の残像として形成される
本稿では,R2D2画像推定プロセスのロバスト性について,その一連の学習モデルに関連する不確実性について検討する。
論文 参考訳(メタデータ) (2024-03-26T19:10:08Z) - The R2D2 deep neural network series paradigm for fast precision imaging in radio astronomy [1.7249361224827533]
最近の画像再構成技術は、CLEANの能力をはるかに超えて、画像の精度が著しく向上している。
高ダイナミックレンジイメージングのためのResidual-to-Residual DNNシリーズと呼ばれる新しいディープラーニング手法を導入する。
高精度を実現するためのR2D2の能力は、超大型アレイ(VLA)を用いた様々な画像観測環境においてシミュレーションで実証されている。
論文 参考訳(メタデータ) (2024-03-08T16:57:54Z) - Rotational Augmented Noise2Inverse for Low-dose Computed Tomography
Reconstruction [83.73429628413773]
改良された深層学習手法は、画像のノイズを除去する能力を示しているが、正確な地上の真実を必要とする。
畳み込みニューラルネットワーク(CNN)のトレーニングに基礎的真理を必要としないLDCTのための新しい自己教師型フレームワークを提案する。
数値および実験結果から,Sparse View を用いた N2I の再構成精度は低下しており,提案手法は異なる範囲のサンプリング角度で画像品質を向上する。
論文 参考訳(メタデータ) (2023-12-19T22:40:51Z) - StableDreamer: Taming Noisy Score Distillation Sampling for Text-to-3D [88.66678730537777]
本稿では3つの進歩を取り入れた方法論であるStableDreamerを紹介する。
まず、SDS生成前の等価性と、簡単な教師付きL2再構成損失を定式化する。
第2に,画像空間拡散は幾何学的精度に寄与するが,色調の鮮明化には潜時空間拡散が不可欠であることを示す。
論文 参考訳(メタデータ) (2023-12-02T02:27:58Z) - CLEANing Cygnus A deep and fast with R2D2 [1.7249361224827533]
電波干渉計による高ダイナミックレンジイメージングのためのResidual-to-Residual DNNシリーズ(R2D2)と呼ばれる、天文学における合成イメージングのための新しいディープラーニングパラダイムが最近提案されている。
本稿では,R2D2 の学習手法により,CLEAN の解像度に取って代わり,最新の最適化アルゴリズムとプラグアンドプレイアルゴリズムの精度をそれぞれ uSARA と AIRI と一致させることが可能であることを示す。
論文 参考訳(メタデータ) (2023-09-06T18:11:09Z) - AliasNet: Alias Artefact Suppression Network for Accelerated
Phase-Encode MRI [4.752084030395196]
スパース再構成はMRIの重要な側面であり、取得時間を短縮し、空間時間分解能を改善するのに役立つ。
1D AliasNetモジュールと既存の2Dディープラーニング(DL)リカバリ技術を組み合わせることで、画像の品質が向上することが実証された。
論文 参考訳(メタデータ) (2023-02-17T13:16:17Z) - Deep network series for large-scale high-dynamic range imaging [2.3759432635713895]
本稿では,大規模高ダイナミックレンジイメージングのための新しい手法を提案する。
ディープニューラルネットワーク(DNN)で訓練されたエンドツーエンドは、ほぼ瞬時に線形逆イメージング問題を解くことができる。
代替のPlug-and-Playアプローチは、高ダイナミックレンジの課題に対処する上で有効であるが、高度に反復的なアルゴリズムに依存している。
論文 参考訳(メタデータ) (2022-10-28T11:13:41Z) - A New Backbone for Hyperspectral Image Reconstruction [90.48427561874402]
3次元ハイパースペクトル画像(HSI)再構成は、スナップショット圧縮画像の逆過程を指す。
空間/スペクトル不変Residual U-Net、すなわちSSI-ResU-Netを提案する。
SSI-ResU-Net は浮動小数点演算の 77.3% 以上で競合する性能を実現する。
論文 参考訳(メタデータ) (2021-08-17T16:20:51Z) - PR-RRN: Pairwise-Regularized Residual-Recursive Networks for Non-rigid
Structure-from-Motion [58.75694870260649]
PR-RRNは、非剛性構造移動のための新しいニューラルネットワークベースの手法である。
再建をさらに規則化するための2つの新しいペアワイズ正規化を提案する。
提案手法は,CMU MOCAPとPASCAL3D+データセットの最先端性能を実現する。
論文 参考訳(メタデータ) (2021-08-17T08:39:02Z) - Data Consistent CT Reconstruction from Insufficient Data with Learned
Prior Images [70.13735569016752]
偽陰性病変と偽陽性病変を呈示し,CT画像再構成における深層学習の堅牢性について検討した。
本稿では,圧縮センシングと深層学習の利点を組み合わせた画像品質向上のためのデータ一貫性再構築手法を提案する。
提案手法の有効性は,円錐ビームCTにおいて,トランキャットデータ,リミテッドアングルデータ,スパースビューデータで示される。
論文 参考訳(メタデータ) (2020-05-20T13:30:49Z) - Unlimited Resolution Image Generation with R2D2-GANs [69.90258455164513]
本稿では,任意の解像度の高品質な画像を生成するための新しいシミュレーション手法を提案する。
この方法では、フル長のミッション中に収集したソナースキャンと同等の大きさのソナースキャンを合成することができる。
生成されたデータは、連続的で、現実的に見え、また、取得の実際の速度の少なくとも2倍の速さで生成される。
論文 参考訳(メタデータ) (2020-03-02T17:49:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。