論文の概要: Multimodal Federated Learning via Contrastive Representation Ensemble
- arxiv url: http://arxiv.org/abs/2302.08888v1
- Date: Fri, 17 Feb 2023 14:17:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-20 14:46:15.641262
- Title: Multimodal Federated Learning via Contrastive Representation Ensemble
- Title(参考訳): コントラスト表現アンサンブルによるマルチモーダルフェデレーション学習
- Authors: Qiying Yu, Yang Liu, Yimu Wang, Ke Xu, Jingjing Liu
- Abstract要約: フェデレーテッド・ラーニング(FL)は、集中型機械学習に代わるプライバシ意識の代替手段として機能する。
既存のFLメソッドはすべて、モデルアグリゲーションを単一のモダリティレベルに依存している。
マルチモーダルFL(CreamFL)のためのコントラスト表現アンサンブルとアグリゲーションを提案する。
- 参考スコア(独自算出の注目度): 17.08211358391482
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the increasing amount of multimedia data on modern mobile systems and
IoT infrastructures, harnessing these rich multimodal data without breaching
user privacy becomes a critical issue. Federated learning (FL) serves as a
privacy-conscious alternative to centralized machine learning. However,
existing FL methods extended to multimodal data all rely on model aggregation
on single modality level, which restrains the server and clients to have
identical model architecture for each modality. This limits the global model in
terms of both model complexity and data capacity, not to mention task
diversity. In this work, we propose Contrastive Representation Ensemble and
Aggregation for Multimodal FL (CreamFL), a multimodal federated learning
framework that enables training larger server models from clients with
heterogeneous model architectures and data modalities, while only communicating
knowledge on public dataset. To achieve better multimodal representation
fusion, we design a global-local cross-modal ensemble strategy to aggregate
client representations. To mitigate local model drift caused by two
unprecedented heterogeneous factors stemming from multimodal discrepancy
(modality gap and task gap), we further propose two inter-modal and intra-modal
contrasts to regularize local training, which complements information of the
absent modality for uni-modal clients and regularizes local clients to head
towards global consensus. Thorough evaluations and ablation studies on
image-text retrieval and visual question answering tasks showcase the
superiority of CreamFL over state-of-the-art FL methods and its practical
value.
- Abstract(参考訳): 現代のモバイルシステムやIoTインフラストラクチャ上のマルチメディアデータの増加に伴い、ユーザのプライバシを侵害することなく、これらのリッチなマルチモーダルデータを活用することが重要な問題となっている。
フェデレーテッド・ラーニング(FL)は、集中型機械学習に代わるプライバシ意識の代替手段として機能する。
しかし、マルチモーダルデータに拡張された既存のflメソッドはすべて単一のモダリティレベルでのモデルアグリゲーションに依存しているため、サーバとクライアントはそれぞれのモダリティに対して同一のモデルアーキテクチャを持つことができる。
これは、タスクの多様性を言うまでもなく、モデルの複雑さとデータ容量の両方の観点から、グローバルモデルを制限する。
本研究では,マルチモーダルFL(CreamFL)のためのコントラシティブ表現アンサンブルとアグリゲーションを提案する。CreamFLは,異種モデルアーキテクチャとデータモダリティを持つクライアントから大規模サーバモデルをトレーニングし,公開データセット上でのみ知識を伝達するマルチモーダル・フェデレート学習フレームワークである。
より優れたマルチモーダル表現融合を実現するため,クライアント表現を集約するグローバルなマルチモーダルアンサンブル戦略を設計する。
マルチモーダルな不一致(モダリティギャップとタスクギャップ)から生じる2つの前例のない不均一な要因による局所モデルドリフトを軽減するため,一様でないクライアントのモダリティに関する情報を補完し,グローバルなコンセンサスに向かってローカルクライアントを正規化する2つのモーダル・イン・モーダルコントラストを提案する。
画像テキスト検索と視覚的質問応答タスクの詳細な評価とアブレーション研究は、最先端のFL法よりもCreamFLの方が優れていることを示す。
関連論文リスト
- FedMoE: Personalized Federated Learning via Heterogeneous Mixture of Experts [4.412721048192925]
我々は、データ不均一性に対処するための効率的パーソナライズされたFederated LearningフレームワークであるFedMoEを紹介する。
FedMoEは2つの微調整段階から構成されており、第1段階では、観測されたアクティベーションパターンに基づいて探索を行うことで問題を単純化する。
第2段階では、これらのサブモデルはさらなるトレーニングのためにクライアントに配布され、サーバ集約のために返される。
論文 参考訳(メタデータ) (2024-08-21T03:16:12Z) - Leveraging Foundation Models for Multi-modal Federated Learning with Incomplete Modality [41.79433449873368]
我々は、事前学習完了(FedMVP)を用いた新しいマルチモーダル・コントラスト学習法、フェデレーション・マルチモーダル・コントラストVeトレーニングを提案する。
FedMVPは、大規模な事前トレーニングモデルを統合して、フェデレーショントレーニングを強化する。
実世界の2つの画像テキスト分類データセットよりも優れた性能を示す。
論文 参考訳(メタデータ) (2024-06-16T19:18:06Z) - Multi-Level Additive Modeling for Structured Non-IID Federated Learning [54.53672323071204]
我々は、異種クライアント間のより良い知識共有のために、マルチレベル付加モデル(MAM)と呼ばれるマルチレベル構造で編成されたモデルを訓練する。
フェデレートMAM(FeMAM)では、各クライアントは各レベル毎に少なくとも1つのモデルに割り当てられ、そのパーソナライズされた予測は、各レベルに割り当てられたモデルの出力を合計する。
実験により、FeMAMは既存のクラスタリングFLおよびパーソナライズされたFLメソッドを様々な非IID設定で超越していることが示された。
論文 参考訳(メタデータ) (2024-05-26T07:54:53Z) - Uni-MoE: Scaling Unified Multimodal LLMs with Mixture of Experts [54.529880848937104]
そこで我々は,MoEアーキテクチャをUni-MoEと呼ぶ一貫したMLLMを開発し,様々なモダリティを扱えるようにした。
具体的には、統一マルチモーダル表現のためのコネクタを持つモダリティ特化エンコーダを特徴とする。
マルチモーダルデータセットの包括的集合を用いた命令調整Uni-MoEの評価を行った。
論文 参考訳(メタデータ) (2024-05-18T12:16:01Z) - NativE: Multi-modal Knowledge Graph Completion in the Wild [51.80447197290866]
本研究では,MMKGCを実現するための包括的フレームワークNativEを提案する。
NativEは、任意のモダリティに対して適応的な融合を可能にするリレーショナル誘導デュアルアダプティブフュージョンモジュールを提案する。
提案手法を評価するために,5つのデータセットを用いたWildKGCという新しいベンチマークを構築した。
論文 参考訳(メタデータ) (2024-03-28T03:04:00Z) - Communication-Efficient Multimodal Federated Learning: Joint Modality
and Client Selection [14.261582708240407]
FL(Multimodal Federated Learning)は、FL設定におけるモデルトレーニングを強化することを目的としている。
マルチモーダルFLの鍵となる課題は、特に異種ネットワーク設定において、未適応のままである。
マルチモーダル設定における上記の課題に対処できる新しいFL手法であるmmFedMCを提案する。
論文 参考訳(メタデータ) (2024-01-30T02:16:19Z) - Cross-Modal Prototype based Multimodal Federated Learning under Severely
Missing Modality [31.727012729846333]
MFCPL (Multimodal Federated Cross Prototype Learning) は、MFLにおいて、高度に欠落したモダリティの下での新たなアプローチである。
MFCPLは、モダリティ共有レベルにおいて、クロスモーダル正規化とクロスモーダルコントラスト機構を備えたモダリティ固有レベルと共に多様なモダリティ知識を提供する。
提案手法では,モーダリティに特有な特徴の正規化を実現するために,クロスモーダルアライメントを導入し,全体的な性能を向上させる。
論文 参考訳(メタデータ) (2024-01-25T02:25:23Z) - Tunable Soft Prompts are Messengers in Federated Learning [55.924749085481544]
フェデレートラーニング(FL)は、複数の参加者が分散データソースを使用して機械学習モデルを協調的にトレーニングすることを可能にする。
FLにおけるモデルプライバシ保護の欠如は無視できない課題となっている。
そこで本研究では,ソフトプロンプトによって参加者間の情報交換を実現する新しいFLトレーニング手法を提案する。
論文 参考訳(メタデータ) (2023-11-12T11:01:10Z) - Unified Multi-modal Unsupervised Representation Learning for
Skeleton-based Action Understanding [62.70450216120704]
教師なしの事前訓練は骨格に基づく行動理解において大きな成功を収めた。
我々はUmURLと呼ばれる統一マルチモーダル非教師なし表現学習フレームワークを提案する。
UmURLは効率的な早期融合戦略を利用して、マルチモーダル機能を単一ストリームで共同でエンコードする。
論文 参考訳(メタデータ) (2023-11-06T13:56:57Z) - FedDM: Iterative Distribution Matching for Communication-Efficient
Federated Learning [87.08902493524556]
フェデレートラーニング(FL)は近年、学術や産業から注目を集めている。
我々は,複数の局所的代理関数からグローバルなトレーニング目標を構築するためのFedDMを提案する。
そこで本研究では,各クライアントにデータ集合を構築し,元のデータから得られた損失景観を局所的にマッチングする。
論文 参考訳(メタデータ) (2022-07-20T04:55:18Z) - Heterogeneous Ensemble Knowledge Transfer for Training Large Models in
Federated Learning [22.310090483499035]
フェデレートラーニング(FL)は、エッジデバイスがプライベートデータを中央集約サーバに公開することなく、協調的にモデルを学習することを可能にする。
既存のFLアルゴリズムの多くは、クライアントとサーバにまたがってデプロイされるのと同じアーキテクチャのモデルを必要とする。
本稿では,Fed-ETと呼ばれる新しいアンサンブル知識伝達手法を提案する。
論文 参考訳(メタデータ) (2022-04-27T05:18:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。