Multimodal Federated Learning via Contrastive Representation Ensemble
- URL: http://arxiv.org/abs/2302.08888v3
- Date: Sat, 6 May 2023 02:26:32 GMT
- Title: Multimodal Federated Learning via Contrastive Representation Ensemble
- Authors: Qiying Yu, Yang Liu, Yimu Wang, Ke Xu, Jingjing Liu
- Abstract summary: Federated learning (FL) serves as a privacy-conscious alternative to centralized machine learning.
Existing FL methods all rely on model aggregation on single modality level.
We propose Contrastive Representation Ensemble and Aggregation for Multimodal FL (CreamFL)
- Score: 17.08211358391482
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the increasing amount of multimedia data on modern mobile systems and
IoT infrastructures, harnessing these rich multimodal data without breaching
user privacy becomes a critical issue. Federated learning (FL) serves as a
privacy-conscious alternative to centralized machine learning. However,
existing FL methods extended to multimodal data all rely on model aggregation
on single modality level, which restrains the server and clients to have
identical model architecture for each modality. This limits the global model in
terms of both model complexity and data capacity, not to mention task
diversity. In this work, we propose Contrastive Representation Ensemble and
Aggregation for Multimodal FL (CreamFL), a multimodal federated learning
framework that enables training larger server models from clients with
heterogeneous model architectures and data modalities, while only communicating
knowledge on public dataset. To achieve better multimodal representation
fusion, we design a global-local cross-modal ensemble strategy to aggregate
client representations. To mitigate local model drift caused by two
unprecedented heterogeneous factors stemming from multimodal discrepancy
(modality gap and task gap), we further propose two inter-modal and intra-modal
contrasts to regularize local training, which complements information of the
absent modality for uni-modal clients and regularizes local clients to head
towards global consensus. Thorough evaluations and ablation studies on
image-text retrieval and visual question answering tasks showcase the
superiority of CreamFL over state-of-the-art FL methods and its practical
value.
Related papers
- FedMoE: Personalized Federated Learning via Heterogeneous Mixture of Experts [4.412721048192925]
We present FedMoE, the efficient personalized Federated Learning framework to address data heterogeneity.
FedMoE is composed of two fine-tuning stages. In the first stage, FedMoE simplifies the problem by conducting a search based on observed activation patterns.
In the second stage, these submodels are distributed to clients for further training and returned for server aggregating.
arXiv Detail & Related papers (2024-08-21T03:16:12Z) - Leveraging Foundation Models for Multi-modal Federated Learning with Incomplete Modality [41.79433449873368]
We propose a novel multi-modal federated learning method, Federated Multi-modal contrastiVe training with Pre-trained completion (FedMVP)
FedMVP integrates the large-scale pre-trained models to enhance the federated training.
We demonstrate that the model achieves superior performance over two real-world image-text classification datasets.
arXiv Detail & Related papers (2024-06-16T19:18:06Z) - Multi-Level Additive Modeling for Structured Non-IID Federated Learning [54.53672323071204]
We train models organized in a multi-level structure, called Multi-level Additive Models (MAM)'', for better knowledge-sharing across heterogeneous clients.
In federated MAM (FeMAM), each client is assigned to at most one model per level and its personalized prediction sums up the outputs of models assigned to it across all levels.
Experiments show that FeMAM surpasses existing clustered FL and personalized FL methods in various non-IID settings.
arXiv Detail & Related papers (2024-05-26T07:54:53Z) - Uni-MoE: Scaling Unified Multimodal LLMs with Mixture of Experts [54.529880848937104]
We develop a unified MLLM with the MoE architecture, named Uni-MoE, that can handle a wide array of modalities.
Specifically, it features modality-specific encoders with connectors for a unified multimodal representation.
We evaluate the instruction-tuned Uni-MoE on a comprehensive set of multimodal datasets.
arXiv Detail & Related papers (2024-05-18T12:16:01Z) - NativE: Multi-modal Knowledge Graph Completion in the Wild [51.80447197290866]
We propose a comprehensive framework NativE to achieve MMKGC in the wild.
NativE proposes a relation-guided dual adaptive fusion module that enables adaptive fusion for any modalities.
We construct a new benchmark called WildKGC with five datasets to evaluate our method.
arXiv Detail & Related papers (2024-03-28T03:04:00Z) - Communication-Efficient Multimodal Federated Learning: Joint Modality
and Client Selection [14.261582708240407]
Multimodal Federated learning (FL) aims to enrich model training in FL settings where clients are collecting measurements across multiple modalities.
Key challenges to multimodal FL remain unaddressed, particularly in heterogeneous network settings.
We propose mmFedMC, a new FL methodology that can tackle the above-mentioned challenges in multimodal settings.
arXiv Detail & Related papers (2024-01-30T02:16:19Z) - Cross-Modal Prototype based Multimodal Federated Learning under Severely
Missing Modality [31.727012729846333]
Multimodal Federated Cross Prototype Learning (MFCPL) is a novel approach for MFL under severely missing modalities.
MFCPL provides diverse modality knowledge in modality-shared level with the cross-modal regularization and modality-specific level with cross-modal contrastive mechanism.
Our approach introduces the cross-modal alignment to provide regularization for modality-specific features, thereby enhancing overall performance.
arXiv Detail & Related papers (2024-01-25T02:25:23Z) - Tunable Soft Prompts are Messengers in Federated Learning [55.924749085481544]
Federated learning (FL) enables multiple participants to collaboratively train machine learning models using decentralized data sources.
The lack of model privacy protection in FL becomes an unneglectable challenge.
We propose a novel FL training approach that accomplishes information exchange among participants via tunable soft prompts.
arXiv Detail & Related papers (2023-11-12T11:01:10Z) - Unified Multi-modal Unsupervised Representation Learning for
Skeleton-based Action Understanding [62.70450216120704]
Unsupervised pre-training has shown great success in skeleton-based action understanding.
We propose a Unified Multimodal Unsupervised Representation Learning framework, called UmURL.
UmURL exploits an efficient early-fusion strategy to jointly encode the multi-modal features in a single-stream manner.
arXiv Detail & Related papers (2023-11-06T13:56:57Z) - FedDM: Iterative Distribution Matching for Communication-Efficient
Federated Learning [87.08902493524556]
Federated learning(FL) has recently attracted increasing attention from academia and industry.
We propose FedDM to build the global training objective from multiple local surrogate functions.
In detail, we construct synthetic sets of data on each client to locally match the loss landscape from original data.
arXiv Detail & Related papers (2022-07-20T04:55:18Z) - Heterogeneous Ensemble Knowledge Transfer for Training Large Models in
Federated Learning [22.310090483499035]
Federated learning (FL) enables edge-devices to collaboratively learn a model without disclosing their private data to a central aggregating server.
Most existing FL algorithms require models of identical architecture to be deployed across the clients and server.
We propose a novel ensemble knowledge transfer method named Fed-ET in which small models are trained on clients, and used to train a larger model at the server.
arXiv Detail & Related papers (2022-04-27T05:18:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.