論文の概要: Efficiently Forgetting What You Have Learned in Graph Representation
Learning via Projection
- arxiv url: http://arxiv.org/abs/2302.08990v1
- Date: Fri, 17 Feb 2023 16:49:10 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-20 14:09:37.687139
- Title: Efficiently Forgetting What You Have Learned in Graph Representation
Learning via Projection
- Title(参考訳): 投影によるグラフ表現学習で学んだことを効率的に忘れる
- Authors: Weilin Cong, Mehrdad Mahdavi
- Abstract要約: 線形GNNにおける非学習問題を考察し、非線形構造への拡張を導入する。
学習するノードの集合が与えられた場合、事前学習されたモデルの重みパラメータを、忘れられるノードの特徴とは無関係な部分空間に投影することで学習するPROJECTORを提案する。
- 参考スコア(独自算出の注目度): 19.57394670843742
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As privacy protection receives much attention, unlearning the effect of a
specific node from a pre-trained graph learning model has become equally
important. However, due to the node dependency in the graph-structured data,
representation unlearning in Graph Neural Networks (GNNs) is challenging and
less well explored. In this paper, we fill in this gap by first studying the
unlearning problem in linear-GNNs, and then introducing its extension to
non-linear structures. Given a set of nodes to unlearn, we propose PROJECTOR
that unlearns by projecting the weight parameters of the pre-trained model onto
a subspace that is irrelevant to features of the nodes to be forgotten.
PROJECTOR could overcome the challenges caused by node dependency and enjoys a
perfect data removal, i.e., the unlearned model parameters do not contain any
information about the unlearned node features which is guaranteed by
algorithmic construction. Empirical results on real-world datasets illustrate
the effectiveness and efficiency of PROJECTOR.
- Abstract(参考訳): プライバシー保護が多くの注目を集めているため、事前学習されたグラフ学習モデルから特定のノードの効果を学習することは同様に重要になっている。
しかし、グラフ構造データへのノード依存のため、グラフニューラルネットワーク(gnns)での表現アンラーニングは困難であり、あまり研究されていない。
本稿では,線形GNNにおける未学習問題をまず研究し,その拡張を非線形構造に導入することによって,このギャップを埋める。
学習するノードの集合が与えられた場合、事前学習されたモデルの重みパラメータを、忘れられるノードの特徴とは無関係な部分空間に投影することで学習するPROJECTORを提案する。
プロジェクタは、ノード依存性に起因する課題を克服し、完全なデータ削除を享受することができる。すなわち、未学習のモデルパラメータは、アルゴリズム構築によって保証される未学習のノード機能に関する情報を一切含まない。
実世界のデータセットにおける実証的な結果から, ProJECTORの有効性と効率が示された。
関連論文リスト
- Erase then Rectify: A Training-Free Parameter Editing Approach for Cost-Effective Graph Unlearning [17.85404473268992]
グラフアンラーニングは、訓練されたグラフニューラルネットワーク(GNN)からノード、エッジ、属性の影響を排除することを目的としている。
既存のグラフアンラーニング技術は、しばしば残りのデータに対する追加のトレーニングを必要とし、かなりの計算コストをもたらす。
本稿では,2段階の学習自由アプローチであるETR(Erase then Rectify)を提案する。
論文 参考訳(メタデータ) (2024-09-25T07:20:59Z) - Community-Centric Graph Unlearning [10.906555492206959]
我々は、新しいグラフ構造マッピング・アンラーニング・パラダイム(GSMU)と、それに基づく新しい手法CGE(Community-centric Graph Eraser)を提案する。
CGEは、コミュニティのサブグラフをノードにマッピングすることで、少ないマップ付きグラフ内でノードレベルの未学習操作の再構築を可能にする。
論文 参考訳(メタデータ) (2024-08-19T05:37:35Z) - Loss-aware Curriculum Learning for Heterogeneous Graph Neural Networks [30.333265803394998]
異種グラフニューラルネットワーク(GNN)の性能向上のためのカリキュラム学習手法の適用について検討する。
データの品質をよりよく分類するために、データの全ノードの品質を測定するLTSと呼ばれる損失認識トレーニングスケジュールを設計する。
本研究は,複雑なグラフ構造データ解析のためのHGNNの能力向上のためのカリキュラム学習の有効性を示すものである。
論文 参考訳(メタデータ) (2024-02-29T05:44:41Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
本稿では,任意のノード間のノード信号を効率的に伝搬する全ペアメッセージパッシング方式を提案する。
効率的な計算は、カーナライズされたGumbel-Softmax演算子によって実現される。
グラフ上のノード分類を含む様々なタスクにおいて,本手法の有望な有効性を示す実験を行った。
論文 参考訳(メタデータ) (2023-06-14T09:21:15Z) - Learning Strong Graph Neural Networks with Weak Information [64.64996100343602]
我々は、弱い情報(GLWI)を用いたグラフ学習問題に対する原則的アプローチを開発する。
非完全構造を持つ入力グラフ上で長距離情報伝搬を行うデュアルチャネルGNNフレームワークであるD$2$PTを提案するが、グローバルな意味的類似性を符号化するグローバルグラフも提案する。
論文 参考訳(メタデータ) (2023-05-29T04:51:09Z) - GIF: A General Graph Unlearning Strategy via Influence Function [63.52038638220563]
Graph Influence Function (GIF)は、削除されたデータにおける$epsilon$-massの摂動に応答してパラメータの変化を効率的に正確に推定できる、モデルに依存しない未学習の手法である。
我々は,4つの代表的GNNモデルと3つのベンチマークデータセットについて広範な実験を行い,未学習の有効性,モデルの有用性,未学習効率の観点からGIFの優位性を正当化する。
論文 参考訳(メタデータ) (2023-04-06T03:02:54Z) - Distributionally Robust Semi-Supervised Learning Over Graphs [68.29280230284712]
グラフ構造化データに対する半教師付き学習(SSL)は、多くのネットワークサイエンスアプリケーションに現れる。
グラフ上の学習を効率的に管理するために,近年,グラフニューラルネットワーク(GNN)の変種が開発されている。
実際に成功したにも拘わらず、既存の手法のほとんどは、不確実な結節属性を持つグラフを扱うことができない。
ノイズ測定によって得られたデータに関連する分布の不確実性によっても問題が発生する。
分散ロバストな学習フレームワークを開発し,摂動に対する定量的ロバスト性を示すモデルを訓練する。
論文 参考訳(メタデータ) (2021-10-20T14:23:54Z) - GraphMI: Extracting Private Graph Data from Graph Neural Networks [59.05178231559796]
GNNを反転させてトレーニンググラフのプライベートグラフデータを抽出することを目的とした textbfGraph textbfModel textbfInversion attack (GraphMI) を提案する。
具体的には,グラフ特徴の空間性と滑らかさを保ちながら,グラフエッジの離散性に対処する勾配モジュールを提案する。
エッジ推論のためのグラフトポロジ、ノード属性、ターゲットモデルパラメータを効率的に活用するグラフ自動エンコーダモジュールを設計する。
論文 参考訳(メタデータ) (2021-06-05T07:07:52Z) - Efficient Robustness Certificates for Discrete Data: Sparsity-Aware
Randomized Smoothing for Graphs, Images and More [85.52940587312256]
本稿では,初期作業を想定したランダム化平滑化フレームワークに基づくモデル非依存の証明書を提案する。
このアプローチがさまざまなモデル、データセット、タスクに対して有効であることを示します。
論文 参考訳(メタデータ) (2020-08-29T10:09:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。